In eigener Sache

Hervorgehoben

Herzlich willkommen

In einem Blog sind die einzelnen Beiträge (Artikel) chronologisch angeordnet: die ältesten ganz hinten, die neuesten ganz vorn. Der Aufbau ist somit anders als bei einer Website, wo alles immer an der gleichen Stelle steht.

Wer etwas bestimmtes über Labyrinthe sucht oder einfach nur wissen will, was überhaupt im Blog zu finden ist, möchte vielleicht gerne so eine Art Inhaltsverzeichnis haben.

Das habe ich inzwischen erstellt und biete es in einer eigenen Seite mit dem Titel Übersicht an.

Aufgerufen wird das Inhaltsverzeichnis über das Register Übersicht und es befindet sich im Menü unter dem Titelbild, zusammen mit dem Register Über uns.

Für einen besseren Durchblick

Für einen besseren Durchblick

Noch etwas

So ungefähr zweimal im Monat soll ein neuer Beitrag erscheinen. Mittlerweile bin ich nicht mehr allein, Andreas Frei ist mein Gastautor.

Folgen

Wer immer darüber informiert sein will, kann diesen Blog auch (natürlich kostenlos und unverbindlich) abonnieren, auch folgen genannt.
Das entsprechende Feld: BLOGGERMYMAZE FOLGEN gibt es in der Seitenleiste zwischen „IM BLOG SUCHEN“ und „KATEGORIEN“.
Man braucht nur seine E-Mail-Adresse anzugeben und erhält immer dann eine Nachricht, wenn wieder ein neuer Artikel im Blog erschienen ist.

Werbung

Dieser Blog nutzt ein kostenfreies und zeitlich unbegrenztes Angebot von WordPress.com. Daher wird an verschiedenen Stellen Werbung eingeblendet. Wir bitten um Verständnis dafür.

Nutzungsrechte

Die meisten Bilder und Grafiken sind von Andreas Frei und mir (Erwin Reißmann) erstellt, soweit nichts anderes vermerkt ist, und werden unter der Lizenz CC BY-NC-SA 4.0 zur Verfügung gestellt.

Verwandte Labyrinthe berechnen

Basierend auf der dritten Anordnung der Labyrinthe aus dem letzten Beitrag (siehe: verwandte Beiträge, unten) können das gegenläufige und komplementäre direkt und das duale Labyrinth indirekt ganz einfach berechnet werden. Dazu wird die Umgangsfolge des Basislabyrinths verwendet.

Das will ich hier am Beispiel des in Abb. 1 abgebildeten Labyrinths durchführen.

Abbildung 1. Labyrinth aus dem 18. oder 19. Jh. geschnitzt auf einem Holzpfeiler in der alten Moschee in Tal, Nordpakistan. Quelle: Saward, S. 60°

Das Labyrinth liegt mit dem Eingang oben und dreht gegen den Uhrzeigersinn. Ich zeichne es zuerst um, so dass der Eingang unten liegt und es im Uhrzeigersinn dreht. So liegt es in der Form vor, die ich immer bei Vergleichen von Labyrinthen verwende. Dieses einachsige Labyrinth mit 9 Umgängen wird nun unser Basislabyrinth. Seine Umgangsfolge ist 5 4 3 2 1 6 9 8 7.

Abbildung 2. Labyrinth von Tal, Umzeichnung: Basislabyrinth

Als erstes schreiben wir die Umgangsfolge rückwärts

Basis: 5 4 3 2 1 6 9 8 7 <—> 7 8 9 6 1 2 3 4 5: Gegenläufiges.

Das bringt uns zum gegenläufigen Labyrinth (Abb. 3).

Abbildung 3. Das Gegenläufige zum Labyrinth von Tal

Nun ergänzen wir, zweitens, die Umgangsfolge des Basislabyrinths zur Anzahl der Umgänge plus eins, also zu 10. 

So erhalten wir die Umgangsfolge 5 6 7 8 9 4 1 2 3 des komplementären Labyrinths, das in Abb. 4 gezeigt wird. 

Abbildung 4. Das Komplementäre zum Labyrinth von Tal

Und schreiben wir nun die Umgangsfolge des Komplementären rückwärts, erhalten wir mittelbar diejenige des dualen Labyrinths: 

Komplement: 5 6 7 8 9 4 1 2 3 <—> 3 2 1 4 9 8 7 6 5: Duales. 

Das duale Labyrinth wird in Abb. 5 dargestellt. 

Abbildung 5. Das Duale zum Labyrinth von Tal

Dieses Ergebnis können wir nun noch prüfen, indem wir die Umgangsfolgen des Gegenläufigen und des Dualen addieren. Sie müssen sich an jeder Stelle zu 10 ergänzen, denn das Duale ist komplementär zum Gegenläufigen.

Die Prüfung bestätigt das Resultat. Das Duale kann auch indirekt aus dem Gegenläufigen berechnet werden, indem man die Umgangsfolge des Gegenläufigen zu 10 ergänzt. Einfacher ist es aber, die Umgangsfolge des Komplementären rückwärts zu schreiben. 

Wir müssen somit die Umgangsfolge des Basislabyrinths kennen. Dann schreiben wir sie rückwärts und erhalten das Gegenläufige. Wir ergänzen sie zu eins mehr als die Anzahl der Umgänge und erhalten das Komplementäre. Und zum Schluss schreiben wir die Umgangsfolge des Komplementären rückwärts und erhalten das Duale.

° Saward Jeff. Labyrinths & Mazes. The Definitive Guide to Ancient & Modern Traditions. Gaia Books: 2003.

Verwandte Beiträge:

Das Rad in der Eilenriede (Hannover) war ursprünglich ein Wunderkreis

Seit 1932 befindet sich ein Labyrinth vom Typ Baltisches Rad in der Eilenriede, dem Stadtwald von Hannover. In der größeren Mitte steht ein Lindenbaum und es hat einen zusätzlichen direkten, kurzen Weg nach außen. Dadurch wird es zu einem Durchgangslabyrinth. Es gehört zu den letzten vier historischen Rasenlabyrinthen in Deutschland (die anderen sind Kaufbeuren, Graitschen, Steigra).

Das Rad in der Eilenriede heutzutage, Foto: Axel Hindemith, gemeinfrei

Es befand sich vorher am heutigen Emmichplatz und wurde bereits 1642 in der Stadtchronik von Hannover erwähnt. Der Anlass dazu war ein Besuch von Herzog Friedrich von Holstein mit seiner Verlobten, der Herzogin Sophia Amalia von Braunschweig und Lüneburg bei seinem hannoverschen Schwager, Herzog Christian Ludwig. Dieser organisierte für das Brautpaar ein „Zeltlager“ in der Eilenriede, dessen Höhepunkt der Brautlauf der Fürstlichkeiten im Labyrinth war.

Wie hat das Labyrinth wohl damals ausgesehen?
Erst jetzt bin ich im Buch „Reise ins Labyrinth“ von Uwe Wolff aus dem Jahr 2001 im Kapitel über die deutschen Rasenlabyrinthe (S. 50 – S. 57) auf eine alte Zeichnung des damaligen Rades gestoßen.

Das Rad 1858, Quelle: „Reise ins Labyrinth“ von Uwe Wolff, 2001

So sah es jedenfalls 1858 aus. Und vermutlich (oder hoffentlich) entspricht es dem ursprünglich angelegtem Labyrinth.
In der Zeichnung fällt vor allem auf, dass die Mitte von einer Doppelspirale gebildet wird. So wie es auch beim Typ Wunderkreis vorkommt. Auch da gibt es zwei Zugänge, manchmal getrennt, manchmal mit einer Verzweigung.

Bei der Suche im Internet bin ich noch auf eine alte Postkarte mit der Labyrinthdarstellung gestoßen. Sie dürfte wohl das Rad aus der Zeit vor 1932 zeigen.

Das Rad auf einer Postkarte

Hier ist wahrscheinlich einiges idealisiert worden und es gibt zwei Umgänge weniger als in der Zeichnung von 1858. Aber es hat wieder die Doppelspirale in der Mitte und die zwei Zugänge. Und damit entspricht es wieder einem Wunderkreis.

Über die Unterschiede von Wunderkreis und Baltisches Rad habe ich schon vor Jahren geschrieben. Dazu empfehle ich, die unten stehenden verwandten Artikel noch einmal nachzulesen.
Vor allem die Transformation eines Wunderkreises in ein Baltisches Rad hatte mich interessiert.
Und diese Umwandlung hat es offensichtlich beim Rad in der Eilenride gegeben.

Verwandte Artikel

Die drei Anordnungen der verwandten Labyrinthe

Im letzten Beitrag habe ich die drei Operationen vorgestellt, die vom Basislabyrinth direkt zu den drei verwandten, dem dualen, dem gegenläufigen und dem komplementären Labyrinth führen (siehe: Verwandte Beiträge, unten). Zwei dieser Aktionen genügen, um zwei verwandte Labyrinthe auf direktem Weg und das dritte indirekt zu erzeugen. Das ist auf drei verschiedene Arten möglich. Diese drei Anordnungen will ich nun vorstellen. Immer steht dabei das Basislabyrinth im linken oberen Feld. 

Abbildung 1 zeigt die erste Anordnung. Vom Basislabyrinth 2 gelangt man dabei durch horizontale Spiegelung des Musters direkt zum gegenläufigen Muster 5 rechts davon. Durch Rotation des Basismusters 2 erhält man direkt das duale Muster 4 unterhalb. Wenn wir nun weiter das gegenläufige Muster 5 drehen oder das duale Muster 4 horizontal spiegeln, führt das indirekt zum komplementären Muster 7. Diese Darstellung der vier verwandten Labyrinthe hat Richard Myers Shelton in seiner Publikation° angewendet. 

Abbildung 1. Erste Anordnung

Eine Kombination der beiden direkten Operationen horizontales Spiegeln und Rotation führt indirekt vom Basismuster zum komplementären Muster. Dieses kann man auch direkt mit der Operation vertikales Spiegeln (der diagonal gegenüberliegenden Muster) erzielen, wie in Abb. 2 veranschaulicht wird.

Abbildung 2. Erste Anordnung mit direkter Herleitung (diagonal)

Wir haben hier somit für die Labyrinthe Basis (B), Gegenläufiges (G), Duales (D) und Komplementäres (K) die Anordnung:

B G

D K

Die zweite Anordnung wird in Abb. 3 dargestellt. Dies ist die Art, wie ich bisher die vier verwandten Labyrinthe angeordnet habe. Durch Rotation des Basismusters 2 erzeuge ich das duale Muster 4 und stelle es rechts nebenan. Durch vertikale Spiegelung des Basismusters 2 erzeuge ich das komplementäre Muster 7 und stelle es unter das Basismuster. Das gegenläufige Muster 5 ergibt sich durch Rotation des komplementären oder vertikale Spiegelung des dualen Musters diagonal gegenüber dem Basismuster. 

Abbildung 3. Zweite Anordnung

Die Anordnung der vier verwandten Labyrinthe in Abb. 3 ist:

B D

K G

Nun gibt es noch eine dritte Möglichkeit, wie man vom Basislabyrinth links oben aus die verwandten Labyrinthe anordnen kann. Diese wird in Abb. 4 gezeigt. Hier spiegle ich das Muster des Basislabyrinth 2 horizontal, erzeuge so das gegenläufige Muster 5 und setze es rechts daneben. Durch vertikale Spiegelung des Basismusters 2 erzeuge ich das komplementäre Muster 7 und stelle es unter das Basismuster. Dann ergibt sich das duale Muster 4 indirekt durch horizontale Spiegelung des komplementären oder vertikale Spiegelung des gegenläufigen Musters diagonal gegenüber dem Basismuster. 

Abbildung 4. Dritte Anordnung

Die Anordnung der vier verwandten Labyrinthe in Abb. 4 ist:

B G

K D

Alle drei Anordnungen zeigen die gleichen vier verwandten Labyrinthe. Die stehen auch immer in derselben Verwandtschaftsbeziehung zu einander. Das Basislabyrinth ist 2. In jeder Anordnung ist zu diesem Basislabyrinth dual Labyrinth 4, gegenläufig Labyrinth 5 und komplementär Labyrinth 7.

Die in Abb. 4 vorgestellte dritte Anordnung hat aber zwei Vorteile gegenüber den anderen beiden. Erstens sie ist anschaulicher: Nebeneinander stehen die horizontal gespiegelten Muster, untereinander die vertikal gespiegelten. Damit stehen sie dort, wo sie durch die Vorgänge der Spiegelung hingehören. Horizontales Spiegeln des Basismusters (mit Umklappen der Anschlussstücke) und anschliessendes vertikales Spiegeln des so erzeugten gegenläufigen Musters (mit erneutem Umklappen der Anschlussstücke) kommen auf dasselbe heraus wie Drehen des Basismusters ohne Umklappen der Anschlussstücke (eigentlich: hin- und zurückklappen). Man sieht so am besten, wie aus der Addition von zwei Operatoren der dritte entsteht.

Zweitens können in dieser Anordnung vom Basislabyrinth aus die drei anderen durch einfache Berechnung der Umgangsfolgen ermittelt werden. Dies ist in Abb. 5 veranschaulicht. Man braucht dazu nur die Umgangsfolge eines, sagen wir des Basislabyrinths. Diese lautet 1 2 5 4 3. Nun muss man für das Gegenläufige diese Umgangsfolge rückwärts schreiben, also 

1 2 5 4 3 <—> 3 4 5 2 1. 

Die Umgangsfolge des Komplementären ist ebenfalls leicht zu ermitteln. Man muss die Umgangsfolge des Basislabyrinths immer zu eins mehr als die Anzahl Umgänge ergänzen, hier also zu 6, also

1 2 5 4 3

5 4 1 2 3

6 6 6 6 6. 

Und aus der Umgangsfolge des Komplementären lässt sich nun ganz einfach durch Rückwärtsschreiben die des Dualen ermitteln: 

5 4 1 2 3 <—> 3 2 1 4 5. 

Abbildung 5. Einfache Berechnung mit Umgangsfolgen

Wenn wir also für irgendein Labyrinth wissen wollen, welches seine Verwandten sind, müssen wir nur seine Umgangsfolge ermitteln. Dann müssen wir die Umgangsfolge rückwärts schreiben und erhalten so das dazu gegenläufige Labyrinth. Ergänzen wir seine Umgangsfolge an jeder Stelle zu Eins mehr als die Anzahl seiner Umgänge, erhalten wir das dazu komplementäre Labyrinth. Und schreiben wir die Umgangsfolge des Kompelements rückwärts führt uns das zum dualen Labyrinth. 

° Shelton, Richard Myers. 2015. „Wayland’s New Labyrinths“ Caerdroia 44, 44-55.

Verwandte Beiträge:

Wie mache ich die verwandten Labyrinthe?

Ich verwende eine andere Methode, um die verwandten Labyrinthe zu generieren als Andreas. Aber ich bekomme das gleiche Ergebnis. So ergänzen wir uns.

Im Wesentlichen arbeite ich mit der Weg- oder Umgangsfolge, um die gewünschte Version eines bestimmten Labyrinths zu erhalten. Außerdem nehme ich die Wegfolge, um das Labyrinth zu konstruieren und nicht das Grundmuster.

Fig.1: Das Basis Labyrinth

Normalerweise nummeriere ich von außen nach innen (die linken Ziffern in blau), zusätzlich hier noch von innen nach außen (die rechten Ziffern in grün).
Die Wegfolge für das Basislabyrinth lautet hier: 0-1-2-5-4-3-6. „0“ steht für außen, „6“ steht hier für die Mitte. Wir haben ein 5-gängiges Labyrinth vor uns. „1“ bis „5“ sind die Nummern der Umgänge, daher die Umgangsfolge 1-2-5-4-3 (Fig. 1).


Um das duale Labyrinth zu erzeugen, verwende ich einfach die grünen Zahlen rechts im Basislabyrinth. Die Wegfolge ermittle ich, indem ich vom Zentrum aus nach außen gehe. Ich erhalte 6-3-2-1-4-5-0. Nun zeichne ich mit dieser Ziffernreihe ein Labyrinth, bei dem ich von außen zur Mitte gehe. Vorher ersetze ich aber „6“ durch „0“ und „0“ durch „6“, ich tausche gleichsam innen und außen. Die neue Wegfolge ist dann: 0-3-2-1-4-5-6 (Fig. 2).

the dual labyrinth
Fig. 2: Das duale Labyrinth zum Basis Labyrinth

Die linken Zahlen geben nun die Wegfolge an: 0-3-2-1-4-5-6. Wenn ich nun die grünen Ziffern auf der rechten Seite lese, erhalte ich natürlich wieder das Basislabyrinth.


Jetzt benutze ich eine andere Technik, um das gegenläufige Labyrinth zu erzeugen. Ich nehme die Umgangsfolge des dualen Labyrinths, hier: 3-2-1-4-5, und ergänze alle Zahlen zu „6“.
3-2-1-4-5 dual
3-4-5-2-1 ergänzt
———–
6-6-6-6-6
Die zweite Zeile, vervollständigt um „0“ für außen und „6“ für das Zentrum, ergibt die Wegfolge für das gegenläufige Labyrinth: 0-3-4-5-2-1-6 (Fig. 3).

Aber es gibt noch eine weitere Technik, um das zu erreichen: Ich kann die Umgangsfolge vom Basislabyrinth rückwärts lesen und wieder mit „0“ und „6“ komplettieren.
1-2-5-4-3 Basis
3-4-5-2-1 umgestellt
Die zweite Zeile, ergänzt durch „0“ für die Außenseite und „6“ für das Zentrum, ergibt auch die Wegfolge für das gegenläufige Labyrinth: 0-3-4-5-2-1-6 Fig. 3).

the transpose labyrinth
Fig.3: Das gegenläufige Labyrinth zum Basis Labyrinth

Wenn ich nun die grünen Zahlen der rechten Seite nehme, erhalte ich das duale zum gegenläufigen Labyrinth, nämlich das komplementäre Labyrinth mit der Wegfolge: 0-5-4-1-2-3-6 (Fig. 4).


Aber auch hier gibt es die oben beschriebene Technik, um das komplementäre Labyrinth zu erhalten. Ich nehme das Basislabyrinth und ergänze die Ziffern seiner Wegfolge zu „6“.
1-2-5-4-3 Basis
5-4-1-2-3 ergänzt
———–
6-6-6-6-6
Die zweite Zeile, ergänzt durch „0“ für außen und „6“ für das Zentrum, ergibt die Wegfolge für das komplementäre Labyrinth: 0-5-4-1-2-3-6 (Fig. 4).

Ich kann auch das duale Labyrinth nehmen und die Umgangsfolge rückwärts lesen und wieder „0“ und „6“ hinzufügen.
3-2-1-4-5 dual
5-4-1-2-3 umgestellt
Die zweite Zeile, ergänzt mit Außen und Zentrum, ergibt ebenso die Wegfolge für das komplementäre Labyrinth: 0-5-4-1-2-3-6 (Fig. 4).

the complement labyrinth
Fig.4: Das komplementäre Labyrinth zum Basis Labyrinth

Wenn ich nun die grünen Zahlen der rechten Seite nehme, erhalte ich das duale Labyrinth zu diesem komplementären Labyrinth, nämlich das gegenläufige Labyrinth mit der Wegfolge: 0-3-4-5-2-1-6 (Fig. 3).


Wir haben also drei verschiedene Möglichkeiten gesehen, ein Labyrinth in ein anderes zu verwandeln, indem man die Umgangs- oder Wegfolge verwendet.

Es werden jedoch nur zwei Methoden benötigt, um die entsprechenden Labyrinthe zu erzeugen. Ich persönlich bevorzuge die Technik „Umstellen“ und die Technik „Ergänzen“.

Zuerst haben wir das Basislabyrinth (Fig. 1). Durch Umstellen der Wegfolge des Basislabyrinths 1-2-5-4-3 in 3-4-5-2-1 erhalte ich das gegenläufige Labyrinth (Fig. 3).
Dieses gegenläufige Labyrinth mit der Umgangsfolge 3-4-5-2-1 transformiere ich in das duale Labyrinth, indem ich die Umgangsfolge zu 3-2-1-4-5 ergänze (Fig. 2).
Dieses duale Labyrinth transformiere ich dann in das komplementäre Labyrinth, indem ich seine Umgangsfolge 3-2-1-4-5 in 5-4-1-2-3 für das komplementäre Labyrinth umstelle (Fig. 4).
Zur Kontrolle kann ich das Basislabyrinth auch in das komplementäre umwandeln, indem ich die Umgangsfolge 1-2-5-4-3 des Basislabyrinths in 5-4-1-2-3 (Fig. 4) für das komplementäre ergänze.

Alle diese Transformationsmethoden haben die gleiche Wirkung wie die Rotations- und Spiegelungstechniken von Andreas.

Verwandter Artikel