Feeds:
Beiträge
Kommentare

Archive for the ‘Design’ Category

Ich habe schon auf uninteressante und interessante Labyrinthe hingewiesen (siehe verwandte Beiträge, unten). Uninteressante Labyrinthe werden dadurch erzeugt, dass einfach zusätzliche triviale Umgänge aussen oder innen an kleinere Labyrinthe angehängt werden. Interessante Labyrinthe können so nicht erzeugt werden. Das bedeutet insbesondere, dass bei einem interessanten Labyrinth der Weg nicht auf dem äussersten Umgang ins Labyrinth einbiegt oder vom innersten Umgang ins Zentrum abbiegt. Das Duale eines interessanten Labyrinths ist auch ein interessantes Labyrinth.

Das ist anders, wenn man zu einem interessanten Labyrinth das Komplementäre bildet. Dabei kann sehr wohl ein uninteressantes Labyrinth entstehen. Komplementäre Labyrinthe gibt es nur für alternierende Labyrinthe mit ungerader Umgangszahl. Beim Komplementären wird das Muster des Ausgangslabyrinths vertikal gespiegelt ohne dass die Verbindungen vom Eingang ins Labyrinth und vom Labyrinth ins Zentrum unterbrochen werden. Labyrinthe mit ungerader Umgangszahl haben immer einen mittleren Umgang. Beim Spiegeln bleibt der mittlere Umgang an seiner Stelle, während die übrigen Umgänge ihre Positionen symmetrisch darum vertauschen.

Abbildung 1. Spiegelung

In einem siebengängigen Labyrinth, z.B., ist der mittlere Umgang der mit der Nummer 4. Dieser bleibt bei der Spiegelung an seiner Stelle als Nummer 4. Der äusserste Umgang, Nummer 1, wird zum innersten und erhält die Nummer 7, Umgang 2 wird zu Umgang 6, Umgang 3 wird Umgang 5 und vice versa.

Wenn nun bei einem interessanten Labyrinth der Weg zuerst auf den innersten Umgang geht oder das Zentrum vom äussersten Umgang aus erreicht, dann ist das dazu komplementäre ein uninteressantes Labyrinth. Denn bei diesem geht der Weg zuerst auf den äussersten Umgang oder erreicht das Zentrum vom innersten Umgang aus. Es gibt also Paare von komplementären Labyrinthen, bei denen das eine uninteressant, das andere interessant ist und solche, bei denen beide interessant sind.

Nun will ich herausfinden, welches die Paare von interessanten komplementären Labyrinthen sind. Die Website von Tony Phillips liefert für dieses Vorhaben bestes Material. Auf einer Seite sind HIER die Seed Pattern (linke Figuren) und Muster (rechte Figuren) der interessanten alternierenden einachsigen Labyrinthe bis und mit 7 Umgängen enthalten. Ich gebe die Seite deshalb hier in Abb. 2 wieder und gebe zu den mit den roten Buchstaben markierten Stellen noch folgende Erläuterungen dazu:

Abbildung 2. Interessante Labyrinthe

 

  • a) Tony zählt zu den Umgängen des Labyrinths noch die Aussenwelt (= 0) und das Zentrum (= Eins mehr als die Anzahl Umgänge) mit. Er nennt das die Tiefe der Labyrinthe. Diese ist als Zahl mit Doppelpunkt in der Abbildung angegeben. Ein Labyrinth der Tiefe 4 hat drei Umgänge, eines der Tiefe 6 hat 5 Umgänge usw.
  • b) Unter den beiden Figuren (Seed Pattern und Muster) steht jeweils die Umgangsfolge. Sie enthält auch die Null für die Aussenwelt und die Nummer für das Zentrum, hier mit roten Kästchen markiert. Die eigentliche Umgangsfolge ist die Zahlenfolge zwischen diesen Kästchen.
  • c) Wenn das Labyrinth selbstdual ist, steht das als „s.d.“ hinter der Umgangsfolge vermerkt.
  • d) Ist das nicht der Fall, so ist trotzdem nur eines der beiden zu einander dualen Labyrinthe abgebildet, aber die Umgangsfolge des nicht abgebildeten steht in Klammern unter der Umgangsfolge des abgebildeten Labyrinths.
  • e) Die Muster sind so gezeichnet, dass der Weg von rechts oben nach links unten verläuft. Das ist anders als ich es handhabe. Ich zeichne das Muster von links oben nach rechts unten. Der Unterschied liegt darin, dass das zum Muster gehörende Labyrinth bei Tony gegen den Uhrzeigersinn, bei mir im Uhrzeigersinn dreht.
  • f) Betrachten wir nun alle interessanten (inkl. sehr interessanten) Labyrinthe mit 7 Umgängen, also alle ausser der ersten Zeile. Davon gibt es 22 (davon 6 sehr interessante). Abgebildet sind nur die Seed Pattern und Muster von 14 Labyrinthen. Die fehlenden 8 sind aber durch die in Klammern stehenden Umgangsfolgen repräsentiert.

Unter den interessanten Labyrinthen mit 7 Umgängen gibt es nur 2, bei denen der Weg nicht auf dem innersten Umgang ins Labyrinth eintritt und auch nicht vom äussersten Umgang das Zentrum erreicht. Und diese beiden bilden das einzige Paar zueinander komplementärer interessanter Labyrinthe. Wir kennen es schon aus dem ersten Beitrag zu dieser Serie. Es handelt sich um den Grundtyp (g) und das Labyrinth mit dem S-förmigen Wegverlauf (h).

Abbildung 3. Komplementäre und interessante Labyrinthe

Diese sind selbstdual, also sehr interessante Labyrinthe. Bei den übrigen 20 interessanten Labyrinthen ist das komplementäre jeweils ein uninteressantes Labyrinth.

Es gibt also 42 verschiedene alternierende Labyrinthe mit einer Achse und 7 Umgängen. Davon sind 8 Paare interessante duale Labyrinthe, 6 selbstduale sehr interessante Labyrinthe, aber nur gerade 1 Paar zu einander komplementäre interessante Labyrinthe. Auch gibt es keine zwei zueinander komplementäre interessante Labyrinthe mit weniger als 7 Umgängen.

Komplementäre Labyrinthe, bei denen beide auch noch interessante Labyrinthe sind, scheinen also selten und etwas Besonderes zu sein.

Verwandte Beiträge:

Advertisements

Read Full Post »

Nicht zu jedem Labyrinth kann ein komplementäres Gegenstück gebildet werden. Das Komplementäre erhält man durch vertikale Spiegelung des Musters, wobei die Verbindungen zwischen Eingang / Zentrum und ihren Umgängen im Labyrinth nicht unterbrochen werden. Wenn der Eingang und der Zugang zum Zentrum auf derselben Seite der Achse liegen, geht das nicht.

Abbildung 1. Alternierendes Labyrinth mit gerader Umgangszahl

Abb. 1 zeigt dies am Beispiel des alternierenden, einachsigen Labyrinths mit 6 Umgängen und der Umgangsfolge 3 2 1 6 5 4. Wie aus dem Muster (mittlere Figur) ersichtlich, liegen der Eingang und der Zugang zum Zentrum auf der gleichen Seite der Achse. Der Weg geht zuerst auf den 3. Umgang und erreicht das Zentrum zuletzt vom 4. Umgang aus. Will man dieses Muster spiegeln und die axialen Verbindungen zum Eingang und zum Zentrum aufrecht erhalten, überschneiden sich die beiden Linien an der Stelle mit dem schwarzen Kreis. Eine solche Figur ist nicht mehr kreuzungsfrei und daher kein Labyrinth. Bei alternierenden Labyrinthen mit gerader Umgangszahl gibt es also keine komplementären Labyrinthe.

Nun gibt es auch nicht-alternierende Labyrinthe mit gerader Umgangszahl, bei denen der Eingang ins Labyrinth und der Zugang zum Zentrum auf den gegenüberliegenden Seiten der Achse liegen. Das Labyrinth in Abb. 2 ist ein solches und wurde hier auf diesem Blog schon mehrfach besprochen.

Abbildung 2. Nicht-alternierendes Labyrinth mit gerader Umgangszahl

Dieses nicht-alternierende, einachsige Labyrinth mit 6 Umgängen hat die Umgangsfolge 3 2 1-6 5 4. Das ist die gleiche Umgangsfolge wie beim Labyrinth in Abb 1, mit dem Unterschied, dass der Weg zwischen dem 1. und 6. Umgang die Achse quert. Wir haben hier also ein Labyrinth mit gerader Umgangszahl vor uns, bei dem aber der Eingang ins Labyrinth und der Zugang zum Zentrum an der Achse einander gegenüber liegen. Dennoch kann man kein komplementäres Labyrinth dazu bilden. Spiegelt man das Muster vertikal ohne die Verbindungen zum Eingang und Zentrum zu unterbrechen, ergeben sich nun sogar zwei Überschneidungen (markiert mit schwarzen Kreisen).

Ein komplementäres Labyrinth kann also nur bei alternierenden Labyrinthen mit ungerader Umgangszahl gebildet werden.

Verwandte Beiträge:

Read Full Post »

Die Babylonischen Eingeweidelabyrinthe haben Eingang gefunden in die moderne Medizin. Auf eine ganz ungewöhnliche Art und Weise. Ein labyrinth-artiger Chip dient zur Diagnose von Krebszellen im Blut. Die labyrinthische Anordnung der Bahnen erweist sich als ein wirkungsvolles Werkzeug zur Isolierung von zirkulierenden Krebszellen im Blut. Das heißt, dass die kurvenreiche  und gewundene Linienführung im Labyrinth dabei besonders nützlich ist.

Labyrinth-Chip

Labyrinth-Chip, Foto mit freundlicher Genehmigung der Universität Michigan, © Joseph XU, Michigan Engineering Communications & Marketing

Was ist das nun für ein Labyrinth?
Auf den ersten Blick erinnert es an ein mittelalterliches Labyrinth, wie das berühmte Chartres Labyrinth. Es hat zehn Umgänge in drei Sektoren, in einem sind es acht. Sie werden nicht der Reihe nach durchlaufen, sondern wechselweise. Und dann hat es zwei Zugänge: Einen Eingang und einen Ausgang. Es ist also ein Durchgangslabyrinth wie wir das von den Babylonischen Labyrinthen kennen. Wir haben daher einen eigenen, neuen Typ vor uns. Dargestellt ist der Weg im Labyrinth, der Ariadnefaden. Das erinnert uns an den Mythos vom Minotauros, den es zu bekämpfen gilt wie hier den Krebs.
Dienten die Babylonischen Eingeweidelabyrinthe zur Wahrsagung, dient hier das Labyrinth der Medizin.
Das erinnert mich an „Ancient Myths & Modern Uses„, ein Buch über Labyrinthe von Sig Lonegren.

Verwandte Artikel

Weiterführende Links

Read Full Post »

Jeweils vier Labyrinthe stehen in einer komplementären oder dualen Beziehung zueinander. Das drückt sich auch in den Umgangsfolgen aus. Erwin hat es in seinem Kommentar zu meinem vorletzten Beitrag (siehe: verwandte Beiträge, unten) schon bemerkt: Die Umgangsfolgen komplementärer Labyrinthe unter einander geschrieben addieren sich an jeder Position zu Eins mehr als die Anzahl der Umgänge. In der Abbildung 1 zeige ich, was das heisst.

Abbildung 1. Umgangsfolgen komplementärer Labyrinthe

Zuerst schreiben wir zu jedem Muster die entsprechende Umgangsfolge. Die Muster in der gleichen Spalte sind komplementär. Nun nehmen wir die Umgangsfolgen der dualen Labyrinthe 2 und 4 und schreiben darunter die Umgangsfolgen der dualen Labyrinthe 7 und 5. Dann addieren wir die unter einander stehenden Zahlen. Die Summe ist an jeder Stelle 6. Also 1 höher als die Anzahl 5 der Umgänge.

Nun gibt es noch einen Zusammenhang zwischen den Umgangsfolgen. Dieser wird in Abbildung 2 veranschaulicht.

Abbildung 2. Umgangsfolgen dual-komplementärer Labyrinthe

Die Umgangsfolgen der dual-komplementären Labyrinthe sind spiegelsymmetrisch. Hier werden also die beiden über Kreuz zueinander in Beziehung stehenden Labyrinthe betrachtet. Labyrinth 5 ist das Komplementäre zum Dualen (4), resp das Duale zum Komplementären (7), also das dual-komplementäre von Labyrinth 2. Diese Beziehung ist mit einer schwarzen Linie mit quadratischen Linienenden angedeutet. Auch die Umgangsfolgen dieser Labyrinthe sind schwarz geschrieben. Schreibt man die Umgangsfolge von Labyrinth 2 rückwärts, ergibt sich die Umgangsfolge von Labyrinth 5 und umgekehrt (schwarze Umgangsfolgen).
Labyrinth 7 ist das Komplementäre zum Dualen (2), resp das Duale zum Komplementären (5), also das dual-komplementäre von Labyrinth 4. Dies wird mit einer grauen Linie mit runden Linienenden angedeutet. Auch die Umgangsfolgen dieser Labyrinthe sind grau geschrieben. Auch hier gilt: schreibt man die Umgangsfolge von Labyrinth 4 rückwärts, ergibt sich die Umgangsfolge von Labyrinth 7 und vice versa.

Verwandte Beiträge:

Read Full Post »

Bekanntlich gibt es 8 alternierende Labyrinthe mit 1 Achse und 5 Umgängen (siehe „Zum Mäander im Labyrinth“, verwandte Beiträge, unten). Davon sind vier nicht selbstdual. Diese vier stehen alle über die Dualität und Komplementarität miteinander in Beziehung (siehe „Das komplementäre versus das duale Labyrinth“, verwandte Beiträge, unten). Die anderen vier sind selbstduale Labyrinthe.

Ich hatte das Verhältnis zwischen komplementären und selbstdualen Labyrinthen schon angesprochen (siehe „Das komplementäre Labyrinth“, verwandte Beiträge, unten). Hier will ich noch näher darauf eingehen. Ich verwende dazu die gleiche Darstellung wie im letzten Beitrag (siehe „Das komplementäre versus das duale Labyrinth“). Die Labyrinthe bezeichne ich wieder nach der Nummerierung der Arnol’d’schen Mäander, die ihnen zugrunde liegen (siehe „Zum Mäander im Labyrinth).

Abbildung 1. Labyrinthe 1 und 6

Das erste der 8 Arnol’d’schen Labyrinthe, Nr. 1, ist selbstdual (Abb. 1). In der Darstellung steht das duale neben, das komplementäre unter dem originalen Labyrinth. Das zu Nr. 1 Duale ist wiederum Nr. 1 (das ist die Bedeutung von selbstdual). Das zu Nr. 1 Komplementäre ist Nr. 6. Und natürlich ist das zum Komplementären Duale wieder Nr. 6. Somit haben wir im Falle selbstdualer Labyrinthe nur zwei verschiedene Labyrinthe abgedeckt, gegenüber vier bei nicht selbstdualen Labyrinthen. Zwei Labyrinthe fehlen also noch. Wir brauchen eine weitere Abbildung, um Labyrinth Nr. 3 und Nr. 8 abzudecken (Abb. 2).

Abbildung 2. Labyrinthe 3 und 8

Und in der Tat, diese beiden sind komplementär zu einander. Bei den selbstdualen Labyrinthen stehen also nur zwei verschiedene Labyrinthe in Beziehung zu einander.

Hier stellt sich nun die Frage: Gibt es auch selbstkomplementäre Labyrinthe? Bisher haben wir noch kein solches Labyrinth gefunden. Erinnern wir uns daran, was selbstdual bedeutet. Die Muster des originalen und selbstdualen Labyrinths sind deckungsgleich. Ich zeige in Abb. 3, was das heisst. Die beiden Muster nebeneinander stehen in der Beziehung der Dualität. Legen wir sie übereinander, sehen wir, was gemeint ist.

Abbildung 3. Selbstduale Muster sind deckungsgleich

Selbstkomplementär würde bedeuten, dass das originale und komplementäre Muster deckungsgleich wären.

Abbildung 4. Komplementäre Muster sind nicht deckungsgleich

Abb. 4 zeigt, dass die Muster wohl eine gewisse Ähnlichkeit haben, jedoch nicht deckungsgleich sind. Meines Erachtens gibt es keine selbstkomplementären Labyrinthe. Denn durch die vertikale Spiegelung wird bei bleibenden Verbindungen mit dem Eingang, resp. Zentrum  die Umgangsfolge verändert. Die müsste aber gleich bleiben.

Verwandte Beiträge:

 

 

Read Full Post »

Was verstehe ich unter „Indisches Labyrinth“? Damit bezeichne ich zunächst ein einfaches 3- oder mehr-gängiges Labyrinth (um zwei Wendepunkte herum) mit einer Spirale in der Mitte. Diese kann beliebig groß sein. Es handelt sich also um ein zusammengesetztes Labyrinth.

Die Labyrinth Society (TLS) reiht es in „Andere Klassische Grundmuster“ ein, wobei als Untertypen „Chakra-Vyuha Labyrinth“ und „Baltisches Labyrinth“ aufgeführt sind.

Dieser Typ wird auch heutzutage noch verwendet, und sei es als Verzierung auf einer Geburtstagstorte, wie vor kurzem durch Lisa Gidlow Moriarty (USA):

Chakra Vyuha auf Torte

Chakra Vyuha auf Torte, © Lisa Moriarty

Ein solches Labyrinth kann aus einem Grundmuster erzeugt werden, das auf einem Dreieck beruht. Es wird auch Chakra Vyuha genannt. Doch auch andere Grundmuster gibt es (siehe Verwandte Artikel unten).

Und damit wird die Einordnung in eine gemeinsame Typologie schwierig, weil auch Zeit und Ort des Erscheinens ganz unterschiedlich sind.

Ich fange mit einem einfachen Labyrinth an. Es findet sich bei Hermann Kern und stammt aus dem 12. Jhdt.

Chakra Vyuha

Das Indische Labyrinth, Quelle: Hermann Kern, Labyrinthe (1982), Abb. 602, S. 422

Gute 2000 Jahre älter ist das Eingeweidelabyrinth auf einem Tontäfelchen im Vorderasiatischen Museum Berlin mit der Nummer VAT 9560. Der Archäologe Ernst Friedrich Weidner (mehr darüber hier) zeigt es in einem Beitrag von 1917 als Abb. 4:

Das Babylonische Eingeweidelabyrinth

Das Babylonische Eingeweidelabyrinth VAT 9560, Abb. 4

Das sieht nicht so aus, als wäre es aus einem Grundmuster entstanden.

Eingeweidelabyrinth in drei Zügen

Eingeweidelabyrinth in drei Zügen

Es lässt sich jedoch in drei Zügen zeichnen. Ich beginne in der Mitte, zeichne die Spirale, mache auf der rechten Seite eine Schleife nach außen und schwinge in einem Bogen zur linken Seite (grüne Linie). Dann setze ich mich in die Schlaufe, umkurve die vorhergehende Linie und beende die Linie an der Unterseite der Spirale (blaue Linie). Die dritte Linie beginnt neben der vorhergehenden und schwingt nach links oben (gelbe Linie).

Genauso einfach lässt sich auch das Chakra Vyuha zeichnen:

Chakra Vyuha in zwei Zügen

Chakra Vyuha in zwei Zügen

Der eigentliche Weg im Labyrinth, der Ariadnefaden, muss in einem Zug gezeichnet werden.

Das kann von innen nach außen geschehen oder auch umgekehrt.


Im Artikel „Variationen des Wunderkreises“ (siehe Verwandte Artikel unten) hatte ich eine Methode beschrieben, um Durchgangslabyrinthe vom Typ Wunderkreis mit beliebig vielen Umgängen zu erzeugen.

Diese Methode, leicht abgewandelt, lässt sich auch verwenden, um die aus Spiralen mit beliebig vielen Umdrehungen zusammengesetzten einfachen Labyrinthe mit drei und mehr Umgängen zu erzeugen.

Noch einmal kurz die Prinzipien:

Ich beginne in der Mitte und zeichne eine Spirale mit mindestens einer, jedoch auch mehr Umgängen. Die Begrenzungslinien sind hier in Grün, der Ariadnefaden in Braun dargestellt.

Darüber kommt die gewünschte Anzahl an labyrinthischen Umgängen, mindestens drei bis zu (unendlich) vielen. Jedoch immer eine ungerade Anzahl.

Dann kommen die Schlaufen von außen nach innen (in Gelb). Da ich bei den Begrenzungslinien jeweils auf beiden Seiten eine ungerade Anzahl an Linienenden haben muss, beginnt oder endet eine Linie an der Unterseite der Spirale.

Beim Zeichnen der Begrenzungslinien wird die zwischen den Schlaufen liegende mittlere freie Linie nach vorne verlängert (in Rot).

Beim Zeichnen des Ariadnefadens wird auf der Seite mit den ungeraden Linienenden die innerste Linie nach vorne verlängert (in Rot). Die dann noch übrigen freien Linienenden werden in Schlaufen verbunden (in Gelb).

Im letzten Beispiel drehe ich noch eine „Ehrenrunde“ (in Schwarz) um das Ganze. So kann ich mit der richtigen Anzahl an Umgängen die historisch belegte Windelburg von Stolp erzeugen.

Windelburg von Stolp

Windelburg von Stolp

Die Windelburg von Stolp hatte eine dreigängige Spirale und 15 labyrinthische Umgänge plus einem zusätzlichen Umgang außen herum.

Wie soll man nun die vorgestellten Beispiele richtig klassifizieren? Als Indianisches Labyrinth kann man sicher nicht alle bezeichnen. Die Windelburg gehört eher zu den Trojaburgen und wird auch zu den Baltischen Labyrinthen gezählt. Jedoch haben sie alle das gleiche Muster, gehören also zum gleichen Typ.

Um ein Labyrinth auch bauen zu können, muss man es in eine geometrisch korrekte Form bringen. Ich nehme hierfür die Windelburg, nehme etwas weniger Umgänge und erstelle dazu eine Konstruktionszeichnung.

Eine neue Windelburg

Eine neue Windelburg

Diese stelle ich als eine Art Prototyp mit 1 m-Achsmaß, zweifacher Spirale und 9 labyrinthischen Umgängen als PDF-Datei zum anschauen, drucken oder speichern zur Verfügung.

Verwandte Artikel

Read Full Post »

Im letzten Beitrag habe ich das komplementäre Labyrinth vorgestellt. Dies habe ich am Beispiel des Grundtyps getan. Dieser ist selbstdual. Das komplementäre unterscheidet sich vom dualen Labyrinth. Das sieht man besser bei nicht selbstdualen Labyrinthen. Hier will ich das zeigen und wähle dazu ein alternierendes Labyrinth mit 1 Achse und 5 Umgängen. Wie auf diesem Blog auch schon gezeigt, gibt es 8 solche Labyrinthe (Siehe Beitrag Zum Mäander im Labyrinth, unten). Davon sind 4 selbstdual (Labyrinthe 1, 3, 6 und 8) und 4 nicht selbstdual (Labyrinthe 2, 4, 5, und 7).

Ich wähle also eines der nicht selbstdualen Labyrinthe, Nr. 2, und nehme davon das Muster. Mit diesem Muster kann man nun zwei Aktionen durchführen:

  • Drehen

  • Spiegeln

Abbildung 1 zeigt, was herauskommt, wenn man diese Aktionen mit Muster 2 durchführt.

Abbildung 1. Drehen und Spiegeln des Musters

Drehen führt zum dualen Muster von Labyrinth 4.
Spiegeln führt zum komplementären Muster 7.

Somit haben wir nun schon drei Labyrinthe. Nun kann man noch weiter gehen. Wenn man das duale weiter dreht, kommt man wieder zum Ausgangslabyrinth zurück. Aber man kann das duale spiegeln. Das ergibt dann das komplementäre zum dualen. Analog kann man das komplementäre drehen und erhält dann das duale zum komplementären.

Spiegelung des dualen (Muster 4) führt zum dazu komplementären Muster des Labyrinths 5
Drehen des komplementären (Muster 7) führt zum dazu dualen Muster, d.i. ebenfalls Muster 5.

Abbildung 2. Verhältnisse

Abbildung 2 zeigt die entsprechenden Labyrinthe in der Grundform (d.h. dargestellt mit den Begrenzungsmauern) im konzentrischen Stil. Alle 4 nicht selbsdualen alternierenden Labyrinthe mit 1 Achse und 5 Umgängen stehen also in einem Verhältnis der Dualität oder Komplementarität zueinander.

Verwandte Beiträge:

Read Full Post »

Older Posts »

%d Bloggern gefällt das: