Sigmund Gossembrot / 5

Die beiden einachsigen Labyrinthe

Unter den neun Zeichnungen von Gossembrot befinden sich auch zwei einachsige Labyrinthe (siehe Verwandte Beiträge, unten).

Das Labyrinth auf Fol. 53 r hat 9 Umgänge (Abb. 1). Im Zentrum steht: inducens et educens, hineinführend und hinausführend. Auffällig ist die Gestaltung der Achse mit ihrer Rautenform. Die sieht schon fast ein wenig wie eine Vorwegnahme des Knidos Stils aus… Dieses Labyrinth ist zudem nicht alternierend. Der Weg quert die Achse beim Wechsel vom 6. auf den 9. Umgang. Die Stelle ist im Labyrinth mit zwei gestrichelten roten Linien markiert. Diese entsprechen den gestrichelten Linien im Muster. Dieses Muster findet sich erstmalig im Labyrinth von Gossembrot. Es ist darum ein eigener Typ. Ich nenne ihn Typ Gossembrot 53 r.

Abbildung 1. Das Labyrinth auf Folio 53 r

Das Labyrinth auf Fol. 54 v hat 11 Umgänge und liegt im konzentrischen Stil vor (Abb. 2). Man nennt diesen Labyrinth Typ auch den vergrösserten Grundtyp oder vergrösserten Klassischen / Kretischen Typ. Dies, weil sein Seed Pattern im klassischen Stil ein zentrales Kreuz und zwischen den Kreuzarmen je zwei ineinanderliegende Winkel mit einem koaxialen Punkt aufweist. Das Seed Pattern des Grundtyps hat ein zentrales Kreuz mit je einem Winkel und Punkt zwischen den Kreuzarmen.

Abbildung 2. Das Labyrinth auf Foliio 54 v

Von diesem Labyrinth Typ gibt es mehrere historische Exemplare. Die beiden frühesten (Abb. 3) sind Fresken in der Kirche von Hesselager, Fünen, Dänemark und in der Kirche von Sibbo, Finnland (siehe Literatur, unten).

Abbildung 3. Früheste historische Exemplare (15. Jh.)

Beide sind ohne genaue Angaben auf das 15. Jahrhundert datiert. Auch Gossembrot 54 v datiert aus dem 15. Jh. (1480). Es ist also aufgrund der Datierung nicht sicher möglich, das früheste Exemplar dieses Labyrinth Typs zu identifizieren. Es ist also sogar denkbar, dass die Zeichnung von Gossembrot die früheste ist, und somit Gossembrot auch der Urheber dieses Labyrinth Typs war.

Literatur:

Kern H. Labyrinthe – Erscheinungsformen und Deutungen 5000 Jahre Gegenwart eines Urbilds. München: Prestel 1982. S. 413, Abb. 588 (von Kern falsch bezeichnet als Labyrinth vom Kretischen Typ mit sieben Umgängen); S. 415, Abb. 596.

Verwandte Beiträge:

Werbung

Uninteressante Labyrinthe mit mehr als 7 Umgängen

Unter den einachsigen Labyrinthen bis und mit 7 Umgängen gibt es keine zwei zu einander komplementäre uninteressante Labyrinthe. Das liegt daran, dass bei solchen Labyrinthen immer der Weg auf dem äussersten Umgang eintritt oder vom innersten Umgang das Zentrum erreicht (siehe verwandte Beiträge, unten). Aber es gibt uninteressante Labyrinthe mit mehr als 7 Umgängen bei denen dies nicht der Fall ist.

Um dies zu zeigen, beginne ich mit dem Beispiel des 11-gängigen Cakra-Vyuh Labyrinths (siehe verwandte Beiträge). Abbildung 1 zeigt dieses Labyrinth und sein Muster.

Abbildung 1. Das 11-gängige Cakra Vyuh Labyrinth

Wie man sieht, biegt der Weg auf dem ersten Umgang ins Labyrinth ein und erreicht das Zentrum vom innersten Umgang aus. Man kann also den äussersten und innersten Umgang einfach abschneiden (graue Linien in der rechten Figur). Dann erhält man ein 9-gängiges Labyrinth, bei dem der Weg nicht auf dem äussersten Umgang einbiegt und auch nicht das Ziel vom innersten Umgang aus erreicht. Das Muster dieses Labyrinths ist in Abbildung 2 dargestellt.

Abbildung 2. Das Muster des 9-gängigen uninteressanten Labyrinths

Durch das Entfernen der grauen Umgänge verläuft das Muster nun von rechts oben nach links unten. Will man es in der gewohnten Weise darstellen, also von links oben nach rechts unten, muss man es horizontal spiegeln. Das ändert nichts am Muster und auch nichts an dem zugrunde liegenden Labyrinth, ausser, dass das Labyrinth seine Drehrichtung ändert (siehe verwandte Beiträge).

Obwohl nun der Weg auf dem 3. Umgang einbiegt und vom 7. Umgang aus das Zentrum erreicht, ist dies ein uninteressantes Labyrinth. Denn es besteht aus zwei Elementen vom Typ Knossos auf den Umgängen 1 – 3 und 7 – 9 (angedeutet mit Klammern in der rechten Figur) und drei dazwischen liegenden trivialen Umgängen 4, 5, 6 (mit Strichen angedeutet). Dieses Labyrinth ist zwar uninteressant, aber selbstdual.

Zwischenbemerkung: Dieses Labyrinth hat Ähnlichkeit mit dem allseits bekannten Grundtyp (vormals: Kretischen Typ). Aber der Grundtyp ist ein sehr interessantes (d.h. interessantes und selbstduales) Labyrinth.

Abbildung 3. Das Muster des Grundtyps

Er besteht, wie Abb. 3 zeigt, ebenfalls aus zwei Elementen vom Typ Knossos. Dazwischen liegt aber nur ein Umgang. Und dieser ist auch keineswegs trivial, sondern wird benötigt, um die beiden Elemente zu verbinden. Fügt man aber weitere Umgänge serpentinenförmig hinzu, entsteht dann ein uninteressantes Labyrinth.

Zurück zum uninteressanten Labyrinth mit 9 Umgängen. Wie sieht nun das dazu komplementäre Labyrinth aus? Ist es vielleicht auch ein uninteressantes Labyrinth?

Abbildung 4. Die beiden komplementären 9-gängigen Labyrinthe

Um das Komplementäre zu erhalten, spiegeln wir das originale Labyrinth vertikal und lassen die Verbindungen zur Aussenwelt und zum Zentrum bestehen. Der Weg tritt nun auf dem 7. Umgang ein und erreicht das Zentrum vom 3. Umgang aus. Die drei internen trivialen Umgänge sind nach wie vor erkennbar. Aber sie sind umhüllt von den axialen Wegstücken, die ins Labyrinth und zum Zentrum führen. So sind sie eine Ebene tiefer verschachtelt. Das führt nun dazu, dass dieses nicht ein uninteressantes, sondern ein interessantes, und, da selbstdual, ein sehr interessantes Labyrinth ist.

Es scheint also auch bei grösseren Labyrinthen keine zwei zu einander komplementäre uninteressante Labyrinthe zu geben.

Verwandte Beiträge:

 

Segmentfolge bei einachsigen Labyrinthen

Mit den Koordinaten für Segmente aus dem letzten Beitrag (siehe verwandte Beiträge unten) haben wir nun eine anschauliche Notation für die Segmentfolge von Labyrinthen. Folgende Ergänzung finde ich noch wichtig: Man kann solche Koordinaten auch für einachsige Labyrinthe nutzen. Ich zeige das mit den Beispielen für die ich schon die Umgangsfolgen gezeigt habe (verwandte Beiträge). Dazu muss man jeden Umgang in zwei Segmente unterteilen.

Unterteilung der Umgänge in zwei Segmente

Nun schreiben wir die Segmentfolgen für die drei Labyrinthe und vergleichen sie gleich mit ihren Umgangsfolgen.

 

 

 

Eine eindeutige Notation für einachsige Labyrinthe kann man auch erreichen, indem man auf dem gleichen Umgang auf beiden Seiten der Achse jeweils eine andere Nummer schreibt. Dazu muss man die Umgänge in jeweils zwei Segmente unterteilen. Somit ist es möglich, für alternierende und nicht-alternierende einachsige Labyrinthe eindeutige Segmentfolgen zu schreiben. Man kann die gleiche Notation für ein- und mehrachsige Labyrinthe anwenden. Allerdings benötigt man für ein einachsiges Labyrinth mit 7 Umgängen dann immer 14 Koordinaten. Das sind deutlich mehr Zeichen als man für die Umgangsfolgen mit Trennzeichen braucht.

Verwandte Beiträge:

Zur Umgangsfolge von einachsigen Labyrinthen

In einem früheren Beitrag „Typ oder Stil / 6“ (siehe verwandte Beiträge, unten) habe ich mich schon zur Umgangsfolge geäussert. Und zwei Gründe angeführt, warum ich sie nicht zur Benennung von Labyrinth Typen benutze.

  • Unter den einachsigen Labyrinthen entspricht nur bei den alternierenden Labyrinthen eine Umgangsfolge genau einem Wegverlauf. Zieht man auch nicht alternierende einachsige Labyrinthe in Betracht, (Labyrinthe, bei denen der Weg die Achse kreuzt), kann es für die gleiche Umgangsfolge mehrere Wegführungen geben.
  • Bei mehrachsigen Labyrinthen wird die Umgangsfolge schnell lang und unübersichtlich.

Hier will ich auf den ersten Punkt näher eingehen. Und zwar deshalb, weil es eine ganz einfache Lösung gibt. Bei den einachsigen Labyrinthen steht in der Umgangsfolge für jeden Umgang eine Zahl. In der Praxis weisen die grossen dieser Labyrinthe kaum mehr als 15 – 17 Umgänge auf. Die meisten sind deutlich kleiner. Somit könnte man diese Labyrinthe ganz praktisch mit ihrer Umgangsfolge benennen. Aber es besteht das Problem der Mehrdeutigkeit. Erwin hat es in seinem Beitrag „Das klassische 7-gängige Labyrinth mit Achsquerung“ (siehe verwandte Beiträge, unten) aufgegriffen. Ich illustriere es hier und verwende dazu Bilder aus seinem Beitrag.

uf_3214765

Abbildung 1. Umgangsfolge 3 2 1 4 7 6 5

In Abbildung 1 sieht man drei Labyrinthe mit der Umgangsfolge 3 2 1 4 7 6 5. Das erste Bild zeigt den alternierenden Kretischen Typ, das zweite und dritte Bild je ein nicht alternierendes Labyrinth mit der gleichen Umgangsfolge. Beim zweiten Bild quert der Weg die Achse, wenn er vom 1. auf den 4. Umgang wechselt. Beim dritten Bild quert er die Achse vom 4. auf den 7. Umgang. (Es gibt auch noch ein Labyrinth, bei dem der Weg sowohl vom 1. auf den 4. als auch vom 4. auf den 7. Umgang die Achse kreuzt). Wir haben also den einen alternierenden und mehrere nicht-alternierende Labyrinth Typen mit der gleichen Umgangsfolge vorliegen.

Nun gibt es eine einfache Lösung, dies in der Umgangsfolge zu berücksichtigen. Dazu muss man bedenken, dass die einzelnen Zahlen (nicht Ziffern) der Umgangsfolge getrennt sind. Diese Separierung kann man auf verschiedene Weise, mit Leerstelle, Komma, Semikolon u.a.m. machen. Diese Trennzeichen können nun auch benutzt werden, um anzugeben, wie es im nächsten Umgang weiter geht. Wir können also z.B. definieren: wenn der Weg vom einen auf den anderen Umgang die Richtung wechselt, trennen wir mit senkrechtem Strich. Geht der Weg in der gleichen Richtung weiter (und quert somit die Achse), trennen wir mit Bindestrich. Auf diese Weise können wir die Umgangsfolge soweit präzisieren, dass sie auch für nicht alternierende Labyrinthe eindeutig wird. Ich zeige das in Abb. 2 anhand der Bilder aus Abb. 1.

uf_3214765_mit_tz

Abbildung 2. Umgangsfolge mit Trennzeichen


Hier sehen wir zu jedem Labyrinth die entsprechende Umgangsfolge mit Trennzeichen. Die Folge der Zahlen ist überall 3 2 1 4 7 6 5. Aber, während das alternierende Kretische immer senkrechte Striche als Trennzeichen hat (da der Weg nach jedem Umgang die Richtung wechselt), hat die Umgangsfolge von Bild 2 zwischen 1 und 4 einen Bindestrich. Und die Umgangsfolge von Bild 3 hat einen Bindestrich zwischen 4 und 7.

Ja, man kann die Schreibweise noch vereinfachen, indem man die Zahlen mit Leerschlag trennt und nur dort, wo der Weg die Achse kreuzt, einen Bindestrich einfügt. Die Umgangsfolgen würden dann so aussehen:

für das 1. Bild: 3 2 1 4 7 6 5
für das 2. Bild: 3 2 1-4 7 6 5
für das 3. Bild: 3 2 1 4-7 6 5

Es kommt also nur darauf an, in der Umgangsfolge anzugeben, wo die Achse gekreuzt wird. Mit diesen Ergänzungen zur Umgangsfolge ist es nun möglich, jede Wegführung eindeutig zu bezeichnen und somit für jeden alternierenden und nicht alternierenden Labyrinth Typ einen Namen zu vergeben.

Verwandte Beiträge