Welt Labyrinth Tag 2020: Ein Labyrinth zeichnen

Wieder einmal (zum 12. Mal) lädt uns die Labyrinth Society ein, den Welt Labyrinth Tag zu begehen.
Es ist, wie jedes Jahr, der erste Samstag im Mai, heuer der 2. Mai 2020.

Flyer der Labyrinth Society

Flyer der Labyrinth Society

Die weltweite Corona-Pandemie beeinflußt auch diesen Tag. Größere Gruppenveranstaltungen sind da meistens nicht möglich.
Darum sollte der Tag anders als sonst gefeiert werden. Dazu gibt es viele Möglichkeiten.

Die Labyrinth Society bietet unter dem Titel Walk around the World, eine 24-Stunden- Online-Veranstaltung an, die Menschen auf der GoToMeeting-Plattform virtuell über Zeitzonen hinweg miteinander verbindet.
Dazu ist eine Registrierung erforderlich. Mehr darüber und weitere Informationen gibt es auf der Website der Labyrinth Society:


Lars Howlett bietet an, virtuell und online ein Fingerlabyrinth zu verwenden.

Grafik © Lars Howlett

Grafik © Lars Howlett

Das geschieht in einem Zoom-Meeting am 2. Mai.2020 von 12:45 bis 14:00 PM Pacific Time (USA und Kanada), zu dem man sich hier registrieren kann:

Bei uns wäre das von 21:45 bis 23:00 CEST. Hier ein Umrechner für die verschiedenen Zeitzonen:


Mein Vorschlag: Ein Labyrinth zeichnen

Auch dafür gibt es viele Möglichkeiten und Methoden. Einige waren schon Thema in diesem Blog.
Wie wäre es mit einem Labyrinth auf leeren Klopapierrollen? Nach all den Hamsterkäufen müssten doch genügend vorhanden sein?
Dabei wird direkt der Ariadnefaden gezeichnet, der Weg im Labyrinth. Wir verwenden also kein Muster, wie das sonst beim klassischen Labyrinth üblich ist.

Klopapierrollenlabyrinthe

Klopapierrollenlabyrinthe

Wie das geht, wird hier erklärt.


Oder wir zeichnen die (Begrenzungs-) Linien für einen Wunderkreis? Der Weg verläuft hier zwischen den Linien. Es ist ein Durchgangslabyrinth mit einer Wahlmöglichkeit.

Die Begrenzungslinien für einen Wunderkreis

Die Begrenzungslinien für einen Wunderkreis

Genaueres wird nachfolgend erklärt:


Wir können aber auch den Weg im Labyrinth, den Ariadnefaden, zeichnen:

Der Ariadnefaden im Wunderkreis

Der Ariadnefaden im Wunderkreis (Kaufbeuren)

Die Methode dazu sehen wir hier:


Für viele wird es aber auch möglich sein, wie gewohnt, ein Labyrinth zu begehen.

Egal wie, der Welt Labyrinth Tag kann gefeiert werden.
Die Labyrinth Society organisiert auch dazu wieder eine Umfrage.

Wer ein Labyrinth sucht, kann hier fündig werden:

Verwandte Artikel

Werbung

Die Labyrinthe mit 3 Doppelbarrieren, 4 Achsen und 5 Umgängen

Sigmund Gossembrot hat die Doppelbarriere als neues Gestaltungselement von Labyrinthen verwendet. Sein fünfachsiges Labyrinth auf Fol. 51 r (siehe: Verwandte Beiträge 5) und das im Entwurf auf Fol. 53 v verborgene vierachsige Labyrinth (verwandte Beiträge 4) enthalten an allen Nebenachsen ausschliesslich Doppelbarrieren. Sie haben 7 Umgänge und sind keine Sektorenlabyrinthe.

Erwin hat in einer Reihe von Beiträgen neue Sektorenlabyrinthe mit vier Achsen, fünf Umgängen und Doppelbarrieren vorgestellt (verwandte Beiträge 1, 2, 3). Er ist dabei ausgegangen von den 8 möglichen Verläufen, die der Weg in einem einachsigen Labyrinth mit fünf Umgängen nehmen kann. Sektorenlabyrinthe erhält man durch Aneinanderreihung von solchen Wegverläufen. Für eine beliebige Aneinanderreihung von vier aus 8 Wegverläufen gibt es theoretisch 4096 Variationen. Erwin hat einige davon gezeigt. Nicht alle aber haben konsequent das Prinzip der Doppelbarrieren verwirklicht.

Hier gehe ich der Frage nach, wieviele fünfgängige Sektorenlabyrinthe mit vier Achsen und konsequenter Verwendung von Doppelbarrieren es gibt. Ich gehe auch von den 8 verschiedenen möglichen Wegverläufen aus. Diese basieren auf den Arnol’dschen Mäandern in Abb. 1 (verwandte Beiträge 6).

Abbildung 1. Die Arnol’dschen Mäander

In Abb. 2 zeige ich die zu den Mäandern gehörenden Muster. Die Muster tragen die gleichen Nummern wie die Mäander, von denen sie abgeleitet sind. Die linke Hälfte der Abbildung zeigt die Muster aller alternierenden einachsigen Labyrinthe mit fünf Umgängen. Diese Muster enthalten jeweils eine Verbindung von aussen ins Labyrinth hinein (von links oben) und eine Verbindung zum Zentrum (nach rechts unten). Diese Verbindungen sind grau dargestellt. Für die Verwendung als Segmente (Sektoren) in Sektorenlabyrinthen müssen diese Muster zunächst noch ohne die grauen Verbindungsstrecken betrachtet werden. Es geht dabei nur um den Wegverlauf innerhalb des Sektors. In einem Sektorenlabyrinth werden mehrere solche Muster aneinandergereiht. Nur das erste Muster erhält eine Verbindung nach aussen und nur das letzte eine zum Zentrum. Die Muster für die 8 möglichen Wegverläufe in den Sektoren sind im Kasten in der rechten Hälfte wiedergegeben.

Abbildung 2. Die entsprechenden Muster – linke Hälfte: Muster der einachsigen Labyrinthe; rechte Hälfte: Muster der Sektoren

Nun sollen solche Sektorenmuster aneinander gereiht und vierachsige Labyrinthe mit ausschliesslich Doppelbarrieren erzeugt werden. Schauen wir uns zuerst eine solche Doppelbarriere im Labyrinth Typ Gossembrot 51 r an. Abbildung 3 zeigt das Labyrinth mit eingezeichnetem Ariadnefaden (rot). Ausser bei einachsigen Labyrinthen liegt eine Achse immer zwischen zwei Segmenten, wird von zwei verschiedenen Segmenten gebildet. Greifen wir die Doppelbarriere an der dritten Nebenachse heraus. Diese verbindet Segment III und IV und liegt auf den äusseren vier Umgängen. In der Vergrösserung des Ausschnitts ist das Seed Pattern für die Begrenzungsmauern blau nachgezeichnet. Man sieht, wie zwei verschachtelte Wenden des Ariadnefadens symmetrisch an der mittleren Begrenzungsmauer gespiegelt sind. Vier Umgänge werden für die Doppelbarriere benötigt. Bei fünf Umgängen bleibt noch ein Umgang frei für den Übergang von einem Sektor in den nächsten. Daraus wird klar, dass fünfgängige Labyrinthe mit ausschliesslich Doppelbarrieren nur Sektorenlabyrinthe sein können. Der Weg kann nur noch an einer Stelle die Achsen queren, das heisst, er muss den vorangehenden Sektor jeweils vollständig ausgefüllt verlassen.

Abbildung 3. Die Doppelbarriere bei Gossembrot

Abbildung 4 zeigt die zulässigen Verbindungen zwischen den Sektoren. (Pro memoria: die Linien repräsentieren das Muster, also den Ariadnefaden in der Rechteckform). Die Doppelbarrieren beanspruchen vier nebeneinander liegende Umgänge. Sie können so an zwei Stellen auf Umgängen 2 – 5 oder Umgängen 1 – 4 liegen. Zulässig sind nur Verbindungen auf dem gleichen Umgang, also die beiden Möglichkeiten auf dem äussersten (a) oder innersten (b) Umgang. Wollte man bei der Verbindung der Segmente den Umgang wechseln, wie in Verbindungen c und d, würde zusätzlich ein axiales Wegstück zwischen die Hälften der Doppelbarriere eingeschoben, und die Hälften würden um einen Umgang gegeneinander versetzt. Dann ist es aber keine Doppelbarriere mehr.

Abbildung 4. Zulässige Verbindungen der Sektoren

Dieser Umstand schränkt die Möglichkeiten für die Aneinanderreihung der Muster stark ein. Abbildung 5 zeigt, wie die einzelnen Muster verwendet werden können. An den freien Enden eines Musters ist angegeben, mit welchen Mustern es dort verbunden werden kann (Muster Nr., E für Eingang, Z für Zentrum). Ein vierachsiges Labyrinth hat vier Segmente. Diese werden deshalb auch „Quadranten“ genannt.

Abbildung 5. Mögliche Verwendung der Muster

 

  • Zwei Muster, Nr. 1 und Nr. 6, können gar nicht verwendet werden. Mit ihnen kann keine Doppelbarriere erzeugt werden.
  • Vier „einseitige“ Muster, nämlich Nr. 2, Nr. 4, Nr. 5 und Nr. 7 haben nur auf einer Seite eine Hälfte einer Doppelbarriere (rot eingekreist). An dieser Seite können sie mit anderen Mustern zu Doppelbarrieren verbunden werden. Zwar ist es auch noch möglich, Muster Nr. 2 mit Nr. 5 und Muster Nr. 4 mit Nr. 7 zu verbinden (nicht angegeben). Aber das ergibt nur ein zweiachsiges Labyrinth mit einer Doppelbarriere. An der zweiten Seite dieser einseitigen Muster liegt das freie Ende auf dem dritten Umgang. Dort kann keine Doppelbarriere erzeugt werden. Auf dieser Seite kann dann nur die Verbindung zum Eingang oder Zentrum liegen. Diese einseitigen Muster können also nur neben der Hauptachse platziert werden. Muster Nr. 2 und Nr 7 können nur im Quadrant IV liegen, wo sie mit dem Zentrum verbunden sind. Muster Nr. 2 kann nur noch mit Nr. 8 und Muster Nr. 7 nur noch mit Nr. 3 verbunden werden. Muster Nr. 4 und Nr. 5 können nur im Quadrant I liegen, wo sie mit dem Eingang verbunden sind. Muster Nr. 4 kann nur noch mit Nr. 8 und Muster Nr. 5 nur noch mit Nr. 3 verbunden werden.
  • Nur zwei Muster, Nr. 3 und Nr. 8, lassen sich nach beiden Seiten zu Doppelbarrieren ergänzen. Und nur diese können in den Quadranten II oder III verwendet werden. Sie können darüber hinaus auch in Quadranten I oder IV stehen und somit mit dem Eingang oder dem Zentrum verbunden werden (nicht angegeben). Muster Nr. 3 und Nr. 8 können abwechselnd aneinander gereiht oder mit anderen einseitigen Mustern verbunden werden (Muster Nr. 3 mit Nr. 5 und Nr. 7; Muster Nr. 8 mit Nr. 4 und Nr. 2).

Damit haben wir die Grundlagen für die Erzeugung der Muster für die Sektorenlabyrinthe mit den Doppelbarrieren. Wir beginnen mit Mustern für die Quadranten II und III. Hier gibt es nur zwei Anordnungen. Man kann Muster Nr. 8 an Nr. 3 anhängen (oben) oder Muster Nr. 3 an Nr. 8 (unten). Die obere Kombination kann nach Quadrant I hin mit Mustern Nr. 5 oder Nr. 8, nach Quadrant IV hin mit Mustern Nr. 2 oder Nr. 3 ergänzt werden. Die untere Kombination kann nach Quadrant I hin mit Mustern Nr. 3 oder Nr. 4, nach Quadrant IV hin mit Mustern Nr. 7 oder Nr. 8 ergänzt werden.

Mit der oberen Kombination aus den Mustern Nr. 3 und Nr. 8 in Quadranten II und III können also unter konsequenter Verwendung von Doppelbarrieren vier Muster für vierachsige Labyrinthe mit fünf Umgängen gebildet werden. Diese Muster werden in Abb. 6 gezeigt.

Abbildung 6. Die Muster mit der Kombination Nr. 3 in Quadrant II – Nr. 8 in Quadrant III

Auch mit der unteren Kombination aus den Mustern Nr. 8 und Nr. 3 in Quadranten II und III können vier Muster für vierachsige Labyrinthe mit fünf Umgängen und lauter Doppelbarrieren gebildet werden. Diese Muster werden in Abb. 7 wiedergegeben.

Abbildung 7. Die Muster mit der Kombination Nr. 8 in Quadrant II – Nr. 3 in Quadrant III

Abbildung 8 zeigt die zu den Mustern der Abb. 6 gehörenden Labyrinthe.

Abbildung 8. Die Labyrinthe zu den Mustern der Abb. 6

Abbildung 9 schliesslich zeigt die zu den Mustern der Abb. 7 gehörenden Labyrinthe.

Abbildung 9. Die Labyrinthe zu den Mustern der Abb. 7

Die Frage nach der Anzahl möglicher Labyrinthe lässt sich klar beantworten:

  • Es gibt 8 Labyrinthe mit 3 Doppelbarrieren, 4 Achsen und 5 Umgängen.

Über diese Frage hinaus erhalten wir noch folgende Erkenntnisse:

  • Labyrinthe mit 5 Umgängen mit lauter Doppelbarrieren müssen Sektorenlabyrinthe sein.
  • Solche Labyrinthe können an der Hauptachse keine Doppelbarrieren haben. Doppelbarrieren gibt es nur an den Nebenachsen.

Verwandte Beiträge:

  1. Neue fünfgängige Labyrinthe mit Doppelbarrieren
  2. Eine neue Generation von Sektorenlabyrinthen
  3. Ein neuer Typ von Sektorenlabyrinth nach Gossembrot
  4. Sigmund Gossembrot / 3
  5. Sigmund Gossembrot / 2
  6. Zum Mäander im Labyrinth

Ein neuer Typ von Sektorenlabyrinth nach Gossembrot

Bei den 7-gängigen Labyrinthen von Gossembrot in den letzten Beiträgen hat mich vor allem die Technik der Doppelbarrieren fasziniert. Dadurch sind ganz neue Typen an Labyrinthen möglich. Wahrscheinlich hat er die Doppelbarrieren nicht „erfunden“, aber er hat sie als erster konsequent und systematisch benutzt.

Wie sieht es nun aus, wenn man diese Technik bei 5-gängigen Labyrinthen anwendet?
Das habe ich probiert und bin dabei auf eine ganz neue Art von Sektorenlabyrinthen gestoßen.
In diesen wird bekanntlich ein Sektor nach dem anderen durchwandert, bevor die Mitte erreicht wird.
Bei den historischen römischen Labyrinthen unterscheidet man im wesentlich drei verschiedene Varianten: Den Mäander-Typ, den Spiral-Typ und den Serpentinen-Typ (siehe Verwandte Artikel unten).
Der Eintritt ins Labyrinth erfolgt meistens bis zum innersten Umgang. Und in allen vier Sektoren sind die Strukturen gleich.
Der Wechsel in den nächsten Sektor erfolgt entweder immer außen oder auch schon einmal innen entlang (oder abwechselnd).

Jetzt der neue Typ:

Das neue Sektorenlabyrinth im konzentischen Stil

Das neue Sektorenlabyrinth im konzentischen Stil

Was ist das besondere daran?
Schon der Eingang: Er erfolgt auf dem 3. Umgang. Das gibt es bei keinem historischen Sektorenlabyrinth. Und der Eintritt ins Zentrum erfolgt ebenso vom 3. Umgang aus.

Dann ist die Struktur, ausgedrückt durch den Wegverlauf, in jedem Quadranten unterschiedlich.

Quadrant I:   3-2-1-4-5
Quadrant II:  5-2-3-4-1
Quadrant III: 1-4-3-2-5
Quadrant IV: 5-4-1-2-3

Die Übergänge in den nächsten Sektor erfolgen immer wechselweise.

Das neue Labyrinth ist trotzdem sehr ausgewogen und spiegel-symmetrisch.

Hier in einer quadratischen Form:

Das neue Sektorenlabyrinth in quadratischer Form

Das neue Sektorenlabyrinth in quadratischer Form

So lässt es sich besser mit den bisher bekannten römischen Labyrinthen (siehe unten) vergleichen, die meistens quadratisch sind.

Der Unterschied zu diesen wird vor allem in der Diagrammdarstellung deutlich. Denn diese zeigt die innere Struktur, das Muster.

Das Diagramm für das neue Sektorenlabyrinth

Das Diagramm für das neue Sektorenlabyrinth

Schön zu sehen sind dabei die ineinander verschachtelten Mäander.

Aber auch im Knidos Stil macht sich dieser Typ gut:

Das neue Sektorenlabyrinth im Knidos Stil

Das neue Sektorenlabyrinth im Knidos Stil

Wie soll man diesen Typ nun nennen? Und wer baut eines als begehbares Labyrinth?

Verwandte Artikel

Komplementäres und selbstduales Labyrinth

Bekanntlich gibt es 8 alternierende Labyrinthe mit 1 Achse und 5 Umgängen (siehe „Zum Mäander im Labyrinth“, verwandte Beiträge, unten). Davon sind vier nicht selbstdual. Diese vier stehen alle über die Dualität und Komplementarität miteinander in Beziehung (siehe „Das komplementäre versus das duale Labyrinth“, verwandte Beiträge, unten). Die anderen vier sind selbstduale Labyrinthe.

Ich hatte das Verhältnis zwischen komplementären und selbstdualen Labyrinthen schon angesprochen (siehe „Das komplementäre Labyrinth“, verwandte Beiträge, unten). Hier will ich noch näher darauf eingehen. Ich verwende dazu die gleiche Darstellung wie im letzten Beitrag (siehe „Das komplementäre versus das duale Labyrinth“). Die Labyrinthe bezeichne ich wieder nach der Nummerierung der Arnol’d’schen Mäander, die ihnen zugrunde liegen (siehe „Zum Mäander im Labyrinth).

Abbildung 1. Labyrinthe 1 und 6

Das erste der 8 Arnol’d’schen Labyrinthe, Nr. 1, ist selbstdual (Abb. 1). In der Darstellung steht das duale neben, das komplementäre unter dem originalen Labyrinth. Das zu Nr. 1 Duale ist wiederum Nr. 1 (das ist die Bedeutung von selbstdual). Das zu Nr. 1 Komplementäre ist Nr. 6. Und natürlich ist das zum Komplementären Duale wieder Nr. 6. Somit haben wir im Falle selbstdualer Labyrinthe nur zwei verschiedene Labyrinthe abgedeckt, gegenüber vier bei nicht selbstdualen Labyrinthen. Zwei Labyrinthe fehlen also noch. Wir brauchen eine weitere Abbildung, um Labyrinth Nr. 3 und Nr. 8 abzudecken (Abb. 2).

Abbildung 2. Labyrinthe 3 und 8

Und in der Tat, diese beiden sind komplementär zu einander. Bei den selbstdualen Labyrinthen stehen also nur zwei verschiedene Labyrinthe in Beziehung zu einander.

Hier stellt sich nun die Frage: Gibt es auch selbstkomplementäre Labyrinthe? Bisher haben wir noch kein solches Labyrinth gefunden. Erinnern wir uns daran, was selbstdual bedeutet. Die Muster des originalen und selbstdualen Labyrinths sind deckungsgleich. Ich zeige in Abb. 3, was das heisst. Die beiden Muster nebeneinander stehen in der Beziehung der Dualität. Legen wir sie übereinander, sehen wir, was gemeint ist.

Abbildung 3. Selbstduale Muster sind deckungsgleich

Selbstkomplementär würde bedeuten, dass das originale und komplementäre Muster deckungsgleich wären.

Abbildung 4. Komplementäre Muster sind nicht deckungsgleich

Abb. 4 zeigt, dass die Muster wohl eine gewisse Ähnlichkeit haben, jedoch nicht deckungsgleich sind. Meines Erachtens gibt es keine selbstkomplementären Labyrinthe. Denn durch die vertikale Spiegelung wird bei bleibenden Verbindungen mit dem Eingang, resp. Zentrum  die Umgangsfolge verändert. Die müsste aber gleich bleiben.

Verwandte Beiträge: