Die querenden Labyrinthe von Dom Nicolas de Rély

Die letzten querenden Labyrinthe stammen alle aus der Feder von Dom Nicolas de Réliy. Dieser Geistliche aus dem Benediktiner-Kloster Corbie bei Amiens hat im Jahre 1611 acht Federzeichnungen mit eigenen Labyrinth Entwürfen erstellt. Drei davon sind querende Labyrinthe. Nach der Anzahl Achsen geordnet, habe ich sie Rély 2, 3 und 4 genannt. 

Rély 2 hat 15 Umgänge. Es ist auf einem Layout mit 8 Achsen angelegt, kann aber durch Verschieben einer (echten) Einfachbarriere auf 7 Achsen reduziert werden. Der Weg quert die Hauptachse vom 7. auf den 12. Umgang. Und er erreicht das Zentrum vom 15., innersten Umgang aus, der ein voller angehängter trivialer Umgang ist. Deshalb ist es ein uninteressantes Labyrinth (Abb. 1).

Abbildung 1. Rély 2
Abbildung 1. Rély 2

Rély 3 wurde in diesem Blog wegen der unechten Einfachbarrieren schon gezeigt (siehe verwandte Beiträge unten). Es hat 9 Achsen und 5 Umgänge. Der Weg quert die Hauptachse vom 4. auf den 1. Umgang und erreicht das Zentrum nach einem vollen angehängten trivialen 5. Umgang. Somit ist auch dieses Labyrinth als uninteressant zu bezeichnen (Abb. 2).

Abbildung 2. Rély 3
Abbildung 2. Rély 3

Das dritte querende Labyrinth, Rély 4, ist auf einem Layout mi 14 Achsen und 15 Umgängen angelegt (Abb 3). Dieses kann aber auf 10 Achsen reduziert werden. Der Weg quert die Hauptachse vom 6. auf den 13. Umgang. Der Eingang ins Labyrinth von links ist (irrtümlicherweise?) verschlossen. Das Zentrum wird nicht an der Hauptachse erreicht, sondern von der dritten Nebenachse auf dem letzten Umgang. Ein kurzes Wegstück führt deshalb in eine Sackgasse am Ende des letzten Umgangs. 

Abbildung 3. Rély 4
Abbildung 3. Rély 4

Auf die beiden Labyrinthe Rély 2 und Rély 4 werde ich in einem späteren Beitrag noch näher eingehen.

Verwandte Beiträge:

Werbung

Überlegungen zum Wunderkreis, 2

Wie wir gesehen haben (in Teil 1), lassen sich also die unterschiedlichsten Varianten des Wunderkreises erzeugen. Je nachdem welcher Teil mehr oder weniger betont wird, sehen sie dann aus.
Bei der Anlage eines neuen Labyrinthes hängt das natürlich auch von der Größe des zur Verfügung stehenden Platzes ab und dem Zweck, dem das Labyrinth dienen soll.

Typ 5 a-c
Typ 5 a-c

Die Umgangsfolge, wenn wir zuerst nach links gehen: 0-3-2-1-4-a1-b2-c1-c2-b1-a2-5-0. Nach rechts ergibt sich: 0-5-a2-b1-c2-c1-b2-a1-4-1-2-3-0.
Bei den Ziffern haben wir die Reihenfolge mit ungeraden und geraden Zahlen, wie wir es von einem klassischen Labyrinth kennen.
Bei den Buchstaben, die ja die Elemente der Doppelspirale bezeichnen, lässt sich auch eine gewisse Systematik erkennen: Die Buchstaben kommen abwechselnd nacheinander. Folgen sich zwei gleiche, haben wir das Zentrum der Spirale und den grundsätzlichen Richtungswechsel erreicht. Die Zusätze „1“ bezeichnen den unteren Teil und der Zusatz „2“ den oberen Teil eines Umgangs.
Schauen wir die Umgangsfolgen genauer an, erkennen wir, dass die zweite (nach rechts) gegenläufig zur ersten ist.
Wir können also sagen, dass hier zwei verschiedene, jedoch verwandte Labyrinthe einer Gruppe in einem vereint sind. Je nachdem welchen Weg wir zuerst wählen.

Wieviel Umgänge hat eigentlich dieser Wunderkreis?
Das ist etwas schwierig zu zählen. Dazu teilen wir die Figur in drei Teile, das linke untere Viertel, die obere Hälfte und das rechte untere Viertel. Beginnen wir links unten: Da gibt es die 3 „labyrinthischen“ Umgänge und 3 der Doppelspirale. Oben habe wir 4 „labyrinthische“ Umgänge und die 3 der Doppelspirale. Rechts unten: 5 „labyrinthische“ Umgänge und die 3 der Doppelspirale. Wir haben also, je nach Blickwinkel, 6, 7 oder 8 Umgänge.
Als Typbezeichnung dient die Höchstzahl der „labyrinthischen Umgänge plus der Buchstabenfolge für die Umgänge der Doppelspirale. Beides addiert, ergibt die Anzahl der gesamten Umgänge. Im vorliegenden Beispiel „5 a-c“ also 8 insgesamt.
Im Dateinamen für die Zeichnungen habe ich versucht, das ebenfalls auszudrücken, zusätzlich versehen mit der Angabe des Eintritts und des Austritts des Labyrinths.

Verwandte Artikel

Querende Labyrinthe mit mehreren Achsen

Neben den drei einachsigen Labyrinthen aus dem letzten Beitrag (siehe: Verwandte Beiträge 1, unten) gibt es noch 7 historische mehrachsige Labyrinthe, bei denen der Weg die Hauptachse quert. Davon will ich hier vier sehr unterschiedliche Exemplare aus römischer Zeit bis ins 18. Jahrhundert vorstellen, zusammen mit ihren Mustern. Wie man das Muster bei querenden Labyrinthen gewinnt, habe ich auf diesem Blog auch schon gezeigt (verwandte Beiträge 2). 

Das älteste mehrachsige querende Labyrinth ist das polychrome Mosaiklabyrinth aus dem Palast der römischen Prokonsuln, Haus Theseus, auf Kato Paphos, Zypern aus dem 4. Jh. n. Chr. (Abb. 1). Dargestellt ist der Ariadnefaden als Flechtband. Der Weg beginnt aus einer Sackgasse auf dem 1. Umgang. Nach einem vollen Umgang quert er die Hauptachse und beschreibt auf den Umgängen 2 – 6 ein Sektorenlabyrinth mit vier Achsen. Dann folgt ein voller 7. Umgang, der in einen geschlossenen 8. Umgang mündet. 

Abbildung 1. Theseus
Abbildung 1. Theseus

Abbildung 2 zeigt das Labyrinth der Kathedrale von Bayeux aus dem 13. Jh. Dieses hat 4 Achsen und 10 Umgänge. Der Weg quert die Hauptachse auf dem innersten Umgang. 

Abbildung 2. Bayeux
Abbildung 2. Bayeux

Ein seltsames Labyrinth ist auf einer Bronzeplakette aus dem 16. Jh. aus Italien abgebildet (Abb. 3). Es hat 6 unregelmässig verteilte Achsen. Dabei gibt es ein eingeschlossenes Wegstück auf dem 2. und 3. Umgang zwischen der 3. und 4. Achse, das nicht erschlossen ist. Der Weg vom Eingang zum Zentrum verläuft darum herum. Er quert ausserdem 3 mal die Hauptachse. Man kann dieses Labyrinth leicht auf drei Achsen reduzieren. 

Abbildung 3. Plakette
Abbildung 3. Plakette

Auch in diesem Entwurf für ein Hecken-Labyrinth aus dem Jahr 1704 quert der Weg 2 mal die Hauptachse und endet dann peripher in einer Sackgasse (Abb 4). 

Abbildung 4. Liger
Abbildung 4. Liger

Alle diese mehrachsigen querenden Labyrinthe weisen Eigenarten auf. Theseus hat keinen Eingang und kein Zentrum, Bayeux ist uninteressant, da einfach ein zusätzlicher voller Umgang innen angefügt wurde. Die Plakette ist fehlerhaft gezeichnet und unnötig kompliziert. Und in Liger kann man kein Zentrum ausmachen. 

Verwandte Beiträge:

  1. Querende Labyrinthe
  2. Das Muster bei nicht alternierenden Labyrinthen

Überlegungen zum Wunderkreis, 1

Der Wunderkreis war schon oft Gegenstand in diesem Blog. Heute möchte ich einige grundsätzliche Anmerkungen dazu bringen.

Bekanntlich besteht der Wunderkreis aus labyrinthischen Windungen und einer Doppelspirale im Zentrum. Somit gibt es keine zu erreichende Mitte wie sonst im Labyrinth und zudem noch einen extra Ausgang, der aber auch zusammen mit dem Eingang in einer Verzweigung geformt sein kann.

Das macht es schwieriger das alles in einem Muster darzustellen. Auch die sonst übliche Umgangsfolge mit den abwechselnd ungeraden und geraden Ziffern funktioniert da nicht mehr richtig

Daher schlage ich vor, die spiralförmigen Umgänge mit Buchstaben zu bezeichnen. Dadurch ergibt sich auch die Möglichkeit den jeweils unterschiedlichen Typ besser zu beschreiben.

Hier der nach meiner Ansicht kleinste Wunderkreis:

Wunderkreis Typ 3 a
Wunderkreis Typ 3 a

Ein dreigängiges (normales) Labyrinth mit einer Doppelspirale. Die Umgangsfolge, nach links beginnend. wäre dann: 0-1-2-a1-a2-3-0. Wandere ich zuerst nach rechts, ergibt sich: 0-3-a2-a1-2-1-0.

Generelle Anmerkung zu „0“. Damit ist immer der Bereich außerhalb des Labyrinths gemeint. Auch wenn „0“ nicht auf den Zeichnungen erscheint.

Nun kann ich entweder die äußeren Umgänge vergrößern oder nur die Doppelspirale oder beides.

Typ 3 a-b
Typ 3 a-b

Das ist ein Umgang mehr für die Doppelspirale. Die Wegfolge nach links: 0-1-2-a1-b2-b1-a2-3-0. Nach rechts: 0-3-a2-b1-b2-a1-2-1-0.

Und jetzt:

Typ 5 a
Typ 5 a

Die Doppelspirale wie im ersten Beispiel, die äußeren Umgänge um zwei erhöht. Das erzeugt eine Wegfolge mit (nach links): 0-3-2-1-4-a1-a2-5-0. Oder nach rechts: 0-5-a2-a1-4-1-2-3-0.

Nun weiter:

Typ 5 a-b
Typ 5 a-b

Zusätzlich zum vorigen Beispiel ist auch die Doppelspirale vergrößert. Das ergibt: 0-3-2-1-4-a1-b2-b1-a2-5-0. Und: 0-5-a2-b1-b2-a1-4-1-2-3-0.

In den Umgangsfolgen erkenne ich die Gesetzmäßigkeiten wie sie auch in den schon bekannten klassischen entsprechenden Labyrinthen vorkommen. Und wenn ich die Doppelspirale weglasse, lande ich auch bei diesen Labyrinthen.

Verwandte Artikel