Feeds:
Beiträge
Kommentare

Archive for the ‘Labyrinth’ Category

Ich habe schon auf uninteressante und interessante Labyrinthe hingewiesen (siehe verwandte Beiträge, unten). Uninteressante Labyrinthe werden dadurch erzeugt, dass einfach zusätzliche triviale Umgänge aussen oder innen an kleinere Labyrinthe angehängt werden. Interessante Labyrinthe können so nicht erzeugt werden. Das bedeutet insbesondere, dass bei einem interessanten Labyrinth der Weg nicht auf dem äussersten Umgang ins Labyrinth einbiegt oder vom innersten Umgang ins Zentrum abbiegt. Das Duale eines interessanten Labyrinths ist auch ein interessantes Labyrinth.

Das ist anders, wenn man zu einem interessanten Labyrinth das Komplementäre bildet. Dabei kann sehr wohl ein uninteressantes Labyrinth entstehen. Komplementäre Labyrinthe gibt es nur für alternierende Labyrinthe mit ungerader Umgangszahl. Beim Komplementären wird das Muster des Ausgangslabyrinths vertikal gespiegelt ohne dass die Verbindungen vom Eingang ins Labyrinth und vom Labyrinth ins Zentrum unterbrochen werden. Labyrinthe mit ungerader Umgangszahl haben immer einen mittleren Umgang. Beim Spiegeln bleibt der mittlere Umgang an seiner Stelle, während die übrigen Umgänge ihre Positionen symmetrisch darum vertauschen.

Abbildung 1. Spiegelung

In einem siebengängigen Labyrinth, z.B., ist der mittlere Umgang der mit der Nummer 4. Dieser bleibt bei der Spiegelung an seiner Stelle als Nummer 4. Der äusserste Umgang, Nummer 1, wird zum innersten und erhält die Nummer 7, Umgang 2 wird zu Umgang 6, Umgang 3 wird Umgang 5 und vice versa.

Wenn nun bei einem interessanten Labyrinth der Weg zuerst auf den innersten Umgang geht oder das Zentrum vom äussersten Umgang aus erreicht, dann ist das dazu komplementäre ein uninteressantes Labyrinth. Denn bei diesem geht der Weg zuerst auf den äussersten Umgang oder erreicht das Zentrum vom innersten Umgang aus. Es gibt also Paare von komplementären Labyrinthen, bei denen das eine uninteressant, das andere interessant ist und solche, bei denen beide interessant sind.

Nun will ich herausfinden, welches die Paare von interessanten komplementären Labyrinthen sind. Die Website von Tony Phillips liefert für dieses Vorhaben bestes Material. Auf einer Seite sind HIER die Seed Pattern (linke Figuren) und Muster (rechte Figuren) der interessanten alternierenden einachsigen Labyrinthe bis und mit 7 Umgängen enthalten. Ich gebe die Seite deshalb hier in Abb. 2 wieder und gebe zu den mit den roten Buchstaben markierten Stellen noch folgende Erläuterungen dazu:

Abbildung 2. Interessante Labyrinthe

 

  • a) Tony zählt zu den Umgängen des Labyrinths noch die Aussenwelt (= 0) und das Zentrum (= Eins mehr als die Anzahl Umgänge) mit. Er nennt das die Tiefe der Labyrinthe. Diese ist als Zahl mit Doppelpunkt in der Abbildung angegeben. Ein Labyrinth der Tiefe 4 hat drei Umgänge, eines der Tiefe 6 hat 5 Umgänge usw.
  • b) Unter den beiden Figuren (Seed Pattern und Muster) steht jeweils die Umgangsfolge. Sie enthält auch die Null für die Aussenwelt und die Nummer für das Zentrum, hier mit roten Kästchen markiert. Die eigentliche Umgangsfolge ist die Zahlenfolge zwischen diesen Kästchen.
  • c) Wenn das Labyrinth selbstdual ist, steht das als „s.d.“ hinter der Umgangsfolge vermerkt.
  • d) Ist das nicht der Fall, so ist trotzdem nur eines der beiden zu einander dualen Labyrinthe abgebildet, aber die Umgangsfolge des nicht abgebildeten steht in Klammern unter der Umgangsfolge des abgebildeten Labyrinths.
  • e) Die Muster sind so gezeichnet, dass der Weg von rechts oben nach links unten verläuft. Das ist anders als ich es handhabe. Ich zeichne das Muster von links oben nach rechts unten. Der Unterschied liegt darin, dass das zum Muster gehörende Labyrinth bei Tony gegen den Uhrzeigersinn, bei mir im Uhrzeigersinn dreht.
  • f) Betrachten wir nun alle interessanten (inkl. sehr interessanten) Labyrinthe mit 7 Umgängen, also alle ausser der ersten Zeile. Davon gibt es 22 (davon 6 sehr interessante). Abgebildet sind nur die Seed Pattern und Muster von 14 Labyrinthen. Die fehlenden 8 sind aber durch die in Klammern stehenden Umgangsfolgen repräsentiert.

Unter den interessanten Labyrinthen mit 7 Umgängen gibt es nur 2, bei denen der Weg nicht auf dem innersten Umgang ins Labyrinth eintritt und auch nicht vom äussersten Umgang das Zentrum erreicht. Und diese beiden bilden das einzige Paar zueinander komplementärer interessanter Labyrinthe. Wir kennen es schon aus dem ersten Beitrag zu dieser Serie. Es handelt sich um den Grundtyp (g) und das Labyrinth mit dem S-förmigen Wegverlauf (h).

Abbildung 3. Komplementäre und interessante Labyrinthe

Diese sind selbstdual, also sehr interessante Labyrinthe. Bei den übrigen 20 interessanten Labyrinthen ist das komplementäre jeweils ein uninteressantes Labyrinth.

Es gibt also 42 verschiedene alternierende Labyrinthe mit einer Achse und 7 Umgängen. Davon sind 8 Paare interessante duale Labyrinthe, 6 selbstduale sehr interessante Labyrinthe, aber nur gerade 1 Paar zu einander komplementäre interessante Labyrinthe. Auch gibt es keine zwei zueinander komplementäre interessante Labyrinthe mit weniger als 7 Umgängen.

Komplementäre Labyrinthe, bei denen beide auch noch interessante Labyrinthe sind, scheinen also selten und etwas Besonderes zu sein.

Verwandte Beiträge:

Advertisements

Read Full Post »

Wir nehmen ein 7-gängiges kretisches Labyrinth und nummerieren die einzelnen Umgänge von außen nach innen. „0“ steht für außen, „8“ bezeichnet das Zentrum. Die beiden Ziffern nehme ich in die Umgangsfolge mit hinein, obwohl sie eigentlich keine Umgänge sind. Als Start- und Zielpunkte erleichtern sie jedoch das Verständnis der Struktur des Labyrinths.

Der Ariadnefaden im 7-gängigen Labyrinth

Der Ariadnefaden im 7-gängigen Labyrinth

Die Umgangsfolge lautet: 0-3-2-1-4-7-6-5-8

Jeder, der schon einmal den Ariadnefaden in den Schnee „getrampelt“ hat, kennt das: Plötzlich ist kein Platz mehr in der Mitte und da geht man einfach heraus. Und schon hat man ein Durchgangslabyrinth geschaffen. Das ist bei nahezu allen Labyrinthen möglich.

So sieht es dann vielleicht aus:

Der Ariadnefaden im Durchgangslabyrinth

Der Ariadnefaden im Durchgangslabyrinth

Will man nun ein kompakteres Labyrinth, muss man die Form verändern. Die inneren Umgänge werden letztlich zu einer Doppelspirale. Statt zweier getrennter Wege, lässt sich dieser auch zusammenführen und wir haben eine Verknüpfung.

Etwa so:

Das 7-gängige Durchgangslabyrinth

Das 7-gängige Durchgangslabyrinth

Betrachten wir die Umgangsfolge, wenn wir den linken Weg nehmen oder die Abzweigung nach links:
0-3-2-1-4-7-6-5-0

Jetzt nehmen wir zuerst den rechten Weg oder die Abzweigung nach rechts, dann ist die Umgangsfolge:
0-5-6-7-4-1-2-3-0

Da die zwei Reihen untereinander geschrieben sind, lassen sie sich ganz einfach addieren (ohne erste und letzte Ziffer):
8-8-8-8-8-8-8

Das bedeutet: Gehe ich nach links, bin ich im originalen Labyrinth, gehe ich nach rechts, durchquere ich das komplementäre.

Das komplementäre Labyrinth zum 7-gängigen Labyrinth

Das komplementäre Labyrinth zum 7-gängigen Labyrinth

Es hat die Umgangsfolge 0-5-6-7-4-1-2-3-8.

Oder anders ausgedrückt: Das Durchgangslabyrinth enthält zwei verschiedene Labyrinthe, das originale und das komplementäre.

Das 7-gängige kretische Labyrinth ist selbstdual. Dadurch erhalte ich nur zwei verschiedene Labyrinthe durch das Drehen oder Spiegeln, wie Andreas das ausführlich in seinen vorangegangenen Artikeln beschrieben hat.

Wie sieht nun das Durchgangslabyrinth bei einem nicht selbstdualen Labyrinth aus?

Dazu wähle ich ein 9-gängiges Labyrinth als Beispiel:

Ein 9-gängiges Labyrinth

Ein 9-gängiges Labyrinth

Hier sind die Begrenzungslinien dargestellt.
Links oben sehen wir das originale Labyrinth, rechts daneben ist das duale dazu.
Links unten sehen wir das komplementäre zum originalen (oben), rechts daneben ist das duale dazu.
Dieses duale ist aber gleichzeitig auch das komplementäre zum dualen oben.

Das erste 9-gängige Durchgangslabyrinth

Das erste 9-gängige Durchgangslabyrinth

Das erste Durchgangslabyrinth zeigt links den Weg wie im originalen Labyrinth. Rechts zeigt sich jedoch überraschenderweise der Weg des komplementären Labyrinthes zum dualen Labyrinth.

Und das zweite?

Das zweite 9-gängige Durchgangslabyrinth

Das zweite 9-gängige Durchgangslabyrinth

Der linke Weg entspricht dem dualen Labyrinth des Originals. Der rechte Weg aber dem komplementären Labyrinth des Originals.

Jetzt schauen wir wieder ein selbstduales Labyrinth an, ein 11-gängiges, das aus dem erweitertem Grundmuster entwickelt wurde.

Ein 11-gängiges Labyrinth im Knidos Stil

Ein 11-gängiges Labyrinth im Knidos Stil

Das linke ist das originale Labyrinth mit der Umgangsfolge:
0-5-2-3-4-1-6-11-8-9-10-7-12

Das rechte zeigt das komplementäre dazu mit der Umgangsfolge:
0-7-10-9-8-11-6-1-4-3-2-5-12

Die Probe durch Addition (ohne erste und letzte Ziffer):
12-12-12-12-12-12-12-12-12-12-12

Nun konstruieren wir wieder das dazugehörige Durchgangslabyrinth:

Das 11-gängige Durchgangslabyrinth

Das 11-gängige Durchgangslabyrinth

Wieder sehen wir das originale und das komplementäre Labyrinth in einer Figur vereint. Die Umgangsfolgen vorwärts und rückwärts gelesen, zeigen auch, daß die beiden Labyrinthe spiegelsymmetrisch sind. Das trifft auch auf die vorangegangenen Durchgangslabyrinthe zu.

Das sind jetzt alles labyrinththeoretische Überlegungen. Aber hat es solch ein Labyrinth schon einmal als historisches Labyrinth gegeben? Das 7- und das 9-gängige sind mir noch nicht begegnet, aber das 11-gängige Durchgangslabyrinth ist mir bei der Beschäftigung mit den Babylons auf den Solovki-Inseln schon begegnet (siehe Verwandte Artikel unten), Dabei habe ich auch überlegt, wie diese Labyrinthe wohl entstanden sind. Sicher nicht aus den vorgenannten theoretischen Überlegungen heraus, sondern eher aus einer „Mutation“ der 11-gängigen Trojaburgen im skandinavischen Raum. Und damit zusammenhängend auch aus einer anderen Sicht auf die Labyrinthe in dieser Kultur.

Ein besonders schönes Exemplar gibt es als 15-gängiges Labyrinth unter einem Leuchtturm auf der schwedischen Insel Rödkallen im Bottnischen Meerbusen.

Eine 15-gängige Trojaburg auf der Insel Rödkallen

Eine 15-gängige Trojaburg auf der Insel Rödkallen, Foto mit freundlicher Genehmigung von Swedish Lapland.com, © Göran Wallin

Es hat eine offene Mitte und wieder die Verzweigung für die Wahl des Weges. Mehr über schwedische Labyrinthe bringt dieser Artikel auf Swedish Lapland.com von Göran Wallin.

Für mich zeigt sich in diesen Labyrinthen eine ganz besondere Qualität, auch wenn damit ein Paradigmenwechsel verbunden ist.

Verwandte Artikel

Read Full Post »

Nicht zu jedem Labyrinth kann ein komplementäres Gegenstück gebildet werden. Das Komplementäre erhält man durch vertikale Spiegelung des Musters, wobei die Verbindungen zwischen Eingang / Zentrum und ihren Umgängen im Labyrinth nicht unterbrochen werden. Wenn der Eingang und der Zugang zum Zentrum auf derselben Seite der Achse liegen, geht das nicht.

Abbildung 1. Alternierendes Labyrinth mit gerader Umgangszahl

Abb. 1 zeigt dies am Beispiel des alternierenden, einachsigen Labyrinths mit 6 Umgängen und der Umgangsfolge 3 2 1 6 5 4. Wie aus dem Muster (mittlere Figur) ersichtlich, liegen der Eingang und der Zugang zum Zentrum auf der gleichen Seite der Achse. Der Weg geht zuerst auf den 3. Umgang und erreicht das Zentrum zuletzt vom 4. Umgang aus. Will man dieses Muster spiegeln und die axialen Verbindungen zum Eingang und zum Zentrum aufrecht erhalten, überschneiden sich die beiden Linien an der Stelle mit dem schwarzen Kreis. Eine solche Figur ist nicht mehr kreuzungsfrei und daher kein Labyrinth. Bei alternierenden Labyrinthen mit gerader Umgangszahl gibt es also keine komplementären Labyrinthe.

Nun gibt es auch nicht-alternierende Labyrinthe mit gerader Umgangszahl, bei denen der Eingang ins Labyrinth und der Zugang zum Zentrum auf den gegenüberliegenden Seiten der Achse liegen. Das Labyrinth in Abb. 2 ist ein solches und wurde hier auf diesem Blog schon mehrfach besprochen.

Abbildung 2. Nicht-alternierendes Labyrinth mit gerader Umgangszahl

Dieses nicht-alternierende, einachsige Labyrinth mit 6 Umgängen hat die Umgangsfolge 3 2 1-6 5 4. Das ist die gleiche Umgangsfolge wie beim Labyrinth in Abb 1, mit dem Unterschied, dass der Weg zwischen dem 1. und 6. Umgang die Achse quert. Wir haben hier also ein Labyrinth mit gerader Umgangszahl vor uns, bei dem aber der Eingang ins Labyrinth und der Zugang zum Zentrum an der Achse einander gegenüber liegen. Dennoch kann man kein komplementäres Labyrinth dazu bilden. Spiegelt man das Muster vertikal ohne die Verbindungen zum Eingang und Zentrum zu unterbrechen, ergeben sich nun sogar zwei Überschneidungen (markiert mit schwarzen Kreisen).

Ein komplementäres Labyrinth kann also nur bei alternierenden Labyrinthen mit ungerader Umgangszahl gebildet werden.

Verwandte Beiträge:

Read Full Post »

Die Babylonischen Eingeweidelabyrinthe haben Eingang gefunden in die moderne Medizin. Auf eine ganz ungewöhnliche Art und Weise. Ein labyrinth-artiger Chip dient zur Diagnose von Krebszellen im Blut. Die labyrinthische Anordnung der Bahnen erweist sich als ein wirkungsvolles Werkzeug zur Isolierung von zirkulierenden Krebszellen im Blut. Das heißt, dass die kurvenreiche  und gewundene Linienführung im Labyrinth dabei besonders nützlich ist.

Labyrinth-Chip

Labyrinth-Chip, Foto mit freundlicher Genehmigung der Universität Michigan, © Joseph XU, Michigan Engineering Communications & Marketing

Was ist das nun für ein Labyrinth?
Auf den ersten Blick erinnert es an ein mittelalterliches Labyrinth, wie das berühmte Chartres Labyrinth. Es hat zehn Umgänge in drei Sektoren, in einem sind es acht. Sie werden nicht der Reihe nach durchlaufen, sondern wechselweise. Und dann hat es zwei Zugänge: Einen Eingang und einen Ausgang. Es ist also ein Durchgangslabyrinth wie wir das von den Babylonischen Labyrinthen kennen. Wir haben daher einen eigenen, neuen Typ vor uns. Dargestellt ist der Weg im Labyrinth, der Ariadnefaden. Das erinnert uns an den Mythos vom Minotauros, den es zu bekämpfen gilt wie hier den Krebs.
Dienten die Babylonischen Eingeweidelabyrinthe zur Wahrsagung, dient hier das Labyrinth der Medizin.
Das erinnert mich an „Ancient Myths & Modern Uses„, ein Buch über Labyrinthe von Sig Lonegren.

Verwandte Artikel

Weiterführende Links

Read Full Post »

Jeweils vier Labyrinthe stehen in einer komplementären oder dualen Beziehung zueinander. Das drückt sich auch in den Umgangsfolgen aus. Erwin hat es in seinem Kommentar zu meinem vorletzten Beitrag (siehe: verwandte Beiträge, unten) schon bemerkt: Die Umgangsfolgen komplementärer Labyrinthe unter einander geschrieben addieren sich an jeder Position zu Eins mehr als die Anzahl der Umgänge. In der Abbildung 1 zeige ich, was das heisst.

Abbildung 1. Umgangsfolgen komplementärer Labyrinthe

Zuerst schreiben wir zu jedem Muster die entsprechende Umgangsfolge. Die Muster in der gleichen Spalte sind komplementär. Nun nehmen wir die Umgangsfolgen der dualen Labyrinthe 2 und 4 und schreiben darunter die Umgangsfolgen der dualen Labyrinthe 7 und 5. Dann addieren wir die unter einander stehenden Zahlen. Die Summe ist an jeder Stelle 6. Also 1 höher als die Anzahl 5 der Umgänge.

Nun gibt es noch einen Zusammenhang zwischen den Umgangsfolgen. Dieser wird in Abbildung 2 veranschaulicht.

Abbildung 2. Umgangsfolgen dual-komplementärer Labyrinthe

Die Umgangsfolgen der dual-komplementären Labyrinthe sind spiegelsymmetrisch. Hier werden also die beiden über Kreuz zueinander in Beziehung stehenden Labyrinthe betrachtet. Labyrinth 5 ist das Komplementäre zum Dualen (4), resp das Duale zum Komplementären (7), also das dual-komplementäre von Labyrinth 2. Diese Beziehung ist mit einer schwarzen Linie mit quadratischen Linienenden angedeutet. Auch die Umgangsfolgen dieser Labyrinthe sind schwarz geschrieben. Schreibt man die Umgangsfolge von Labyrinth 2 rückwärts, ergibt sich die Umgangsfolge von Labyrinth 5 und umgekehrt (schwarze Umgangsfolgen).
Labyrinth 7 ist das Komplementäre zum Dualen (2), resp das Duale zum Komplementären (5), also das dual-komplementäre von Labyrinth 4. Dies wird mit einer grauen Linie mit runden Linienenden angedeutet. Auch die Umgangsfolgen dieser Labyrinthe sind grau geschrieben. Auch hier gilt: schreibt man die Umgangsfolge von Labyrinth 4 rückwärts, ergibt sich die Umgangsfolge von Labyrinth 7 und vice versa.

Verwandte Beiträge:

Read Full Post »

Ich habe schon ausführlich über die Babylonischen Labyrinthe geschrieben. Dazu verweise ich auf die Verwandten Artikel unten. Hier soll es nun um eine Zusammenstellung gehen.

Die meisten Informationen habe ich dem ausführlichen und ausgezeichneten Artikel von Richard Myers Shelton in Jeff Sawards Caerdroia 42 (März 2014) entnommen, auf den ich auch hier noch einmal hinweisen möchte.

Die Funde befinden sich in den verschiedensten Sammlungen und Museen weltweit. Ich verwende die Katalognummer, um die unterschiedlichen Tontafeln zu bezeichnen.

Die ältesten Exemplare in eckiger Form stammen aus der alt-babylonischen Zeit um 2000 – 1700 v. Chr. und befinden sich in der norwegischen Schøyen Collection.

Das rechteckige Babylonische Labyrinth MS 3194

Das rechteckige Babylonische Labyrinth MS 3194

Das quadratische Babylonische Labyrinth MS 4515

Das quadratische Babylonische Labyrinth MS 4515

Dann folgen die verschiedenen mehr runden Eingeweidelabyrinthe aus der mittel- bis neubabylonischen Zeit um 1500 – 500 v. Chr.. Sie sind zu finden im Vorderasiatischen Museum Berlin (VAN … und VAT … Nrn.), im Louvre (AO 6033), im Rijksmuseum van Oudheden in Leiden (Leiden Labyrinth) oder stammen aus Tell Barri in Syrien (E 3384).

Die Tafeln mit mehreren Darstellungen habe ich von links oben nach rechts unten nummeriert und zeige die gut sichtbaren (21 Stück) in größeren Nachzeichnungen. Einige Darstellungen sind unleserlich oder zerstört. Insgesamt sind es 48 Abbildungen.

Dann gibt es noch 6 Einzelexemplare. Die folgen hier:

Eingeweidelabyrinthe

Eingeweidelabyrinthe

Hier nun die 21 größeren Nachzeichnungen der gut erkennbaren Exemplare:

Eingeweidelabyrinth auf VAT 984

Eingeweidelabyrinth auf VAT 984

Eingeweidelabyrinthe auf VAN 9447

Eingeweidelabyrinthe auf VAN 9447

Eingeweidelabyrinthe auf E 3384 recto

Eingeweidelabyrinthe auf E 3384 recto

Eingeweidelabyrinthe auf E 3384 verso

Eingeweidelabyrinthe auf E 3384 verso

Damit haben wir insgesamt 56 Babylonische Labyrinthe vor uns, von denen 29 eindeutig zu erkennen sind.

Allen 29 Exemplaren ist gemeinsam, dass sie einen eindeutigen Weg aufweisen, der komplett zurückzulegen ist. Es gibt also keinerlei Abzweigungen, Sackgassen oder tote Enden wie bei einem Irrgarten.

Ebenso haben alle 29 Exemplare eine unterschiedliche Linienführung und kein gemeinsames Muster.

Alle (bis auf VAT 9560_4) haben zwei Eingänge. Bei den eckigen Labyrinthen liegen sie ungefähr in der Mitte der gegenüberliegenden Seiten. Bei den übrigen, meist rundlichen Exemplaren liegen sie nebeneinander oder sind versetzt.

Das Leiden Labyrinth ist einfach eine Doppelspirale. Eine weitere Besonderheit ist das Eingeweidelabyrinth VAT 9560_4. Es hat nur einen Eingang und eine spiralförmige Mitte, ganz so wie wir es vom Indischen Labyrinth kennen. Es stellt also einwandfrei ein Labyrinth dar.

Das Mesopotamische Labyrinth könnte auch eine geschlossene Mitte (und deshalb nur einen Eingang) haben und die Schlingen verlaufen in einfachen Serpentinen.

Die übrigen 24 Exemplare haben alle eine viel kompliziertere Linienführung mit ineinander verschachtelten Schlaufen und Schlingen.

Die 27 unleserlichen Exemplare sind vermutlich ähnlich strukturiert. Und vielleicht existieren ja noch andere Tontafeln, die der Entdeckung harren?

Über die Bedeutung der eckigen Exemplare wissen wir so gut wie nichts, die übrigen 27 mehr runden Exemplare sind Eingeweidelabyrinthe.

Bei den Eingeweidelabyrinthen sind die Darmschlingen eines Opfertieres als Vorlage für die Deutung bei der Eingeweideschau dargestellt. Von daher ist auch zu verstehen, dass sie möglichst unterschiedlich aussehen sollten. Das erklärt ihre große Vielfalt. Und auch wiederum ihre Ähnlichkeit. Sie stellen eher einen eigenen Stil als einen eigenen Typ dar.

Die Babylonischen Labyrinthe stammen aus einem eigenen Zeitraum, aus einem anderen Kulturkreis und folgen einem anderen Paradigma als das übliche westliche Verständnis des Labyrinths. Sie sind vor allem Durchgangslabyrinthe. Doch auch in unserer Tradition kennen wir Durchgangslabyrinthe, so auch den Wunderkreis.

Ein Wunderkreis im Babylonischen Stil

Ein Wunderkreis im Babylonischen Stil: Das Logo des diesjährigen Treffens der Labyrinth Society (TLS), Entwurf und © Lisa Moriarty

Verwandte Artikel

Read Full Post »

Bekanntlich gibt es 8 alternierende Labyrinthe mit 1 Achse und 5 Umgängen (siehe „Zum Mäander im Labyrinth“, verwandte Beiträge, unten). Davon sind vier nicht selbstdual. Diese vier stehen alle über die Dualität und Komplementarität miteinander in Beziehung (siehe „Das komplementäre versus das duale Labyrinth“, verwandte Beiträge, unten). Die anderen vier sind selbstduale Labyrinthe.

Ich hatte das Verhältnis zwischen komplementären und selbstdualen Labyrinthen schon angesprochen (siehe „Das komplementäre Labyrinth“, verwandte Beiträge, unten). Hier will ich noch näher darauf eingehen. Ich verwende dazu die gleiche Darstellung wie im letzten Beitrag (siehe „Das komplementäre versus das duale Labyrinth“). Die Labyrinthe bezeichne ich wieder nach der Nummerierung der Arnol’d’schen Mäander, die ihnen zugrunde liegen (siehe „Zum Mäander im Labyrinth).

Abbildung 1. Labyrinthe 1 und 6

Das erste der 8 Arnol’d’schen Labyrinthe, Nr. 1, ist selbstdual (Abb. 1). In der Darstellung steht das duale neben, das komplementäre unter dem originalen Labyrinth. Das zu Nr. 1 Duale ist wiederum Nr. 1 (das ist die Bedeutung von selbstdual). Das zu Nr. 1 Komplementäre ist Nr. 6. Und natürlich ist das zum Komplementären Duale wieder Nr. 6. Somit haben wir im Falle selbstdualer Labyrinthe nur zwei verschiedene Labyrinthe abgedeckt, gegenüber vier bei nicht selbstdualen Labyrinthen. Zwei Labyrinthe fehlen also noch. Wir brauchen eine weitere Abbildung, um Labyrinth Nr. 3 und Nr. 8 abzudecken (Abb. 2).

Abbildung 2. Labyrinthe 3 und 8

Und in der Tat, diese beiden sind komplementär zu einander. Bei den selbstdualen Labyrinthen stehen also nur zwei verschiedene Labyrinthe in Beziehung zu einander.

Hier stellt sich nun die Frage: Gibt es auch selbstkomplementäre Labyrinthe? Bisher haben wir noch kein solches Labyrinth gefunden. Erinnern wir uns daran, was selbstdual bedeutet. Die Muster des originalen und selbstdualen Labyrinths sind deckungsgleich. Ich zeige in Abb. 3, was das heisst. Die beiden Muster nebeneinander stehen in der Beziehung der Dualität. Legen wir sie übereinander, sehen wir, was gemeint ist.

Abbildung 3. Selbstduale Muster sind deckungsgleich

Selbstkomplementär würde bedeuten, dass das originale und komplementäre Muster deckungsgleich wären.

Abbildung 4. Komplementäre Muster sind nicht deckungsgleich

Abb. 4 zeigt, dass die Muster wohl eine gewisse Ähnlichkeit haben, jedoch nicht deckungsgleich sind. Meines Erachtens gibt es keine selbstkomplementären Labyrinthe. Denn durch die vertikale Spiegelung wird bei bleibenden Verbindungen mit dem Eingang, resp. Zentrum  die Umgangsfolge verändert. Die müsste aber gleich bleiben.

Verwandte Beiträge:

 

 

Read Full Post »

Older Posts »

%d Bloggern gefällt das: