Feeds:
Beiträge
Kommentare

Posts Tagged ‘komplementär’

Ganz einfach: Durch Weglassen der Barrieren in den Nebenachsen. Beim Chartres Labyrinth habe ich das vor Jahren schon einmal ausprobiert. Und in den letzten beiden Beiträgen zu diesem Thema bei den Typen Auxerre und Reims. Siehe dazu die Verwandten Artikel unten.

Heute soll noch einmal der Chartres Typ behandelt werden. Hier das Original in wesentlicher Form, im konzentrischem Stil.

Das Chartres Labyrinth

Das Chartres Labyrinth

Das Original mit allen Linien und dem Weg im Labyrinth, dem Ariadnefaden. Die Zacken und das sechsblättrige Element in der Mitte gehören zum Stil Chartres und sind hier weggelassen.

Nun ohne die Barrieren in den Nebenachsen.

Das Chartres Labyrinth ohne die Barrieren

Das Chartres Labyrinth ohne die Barrieren

Anders als bei den Typen Auxerre und Reims können alle Umgänge in das nun entstehende Labyrinth einbezogen werden. Die Wegfolge ist: 5-4-3-2-1-6-11-10-9-8-7-12. Wir haben acht Wendepunkte mit gestapelten Umgängen. Es ist selbstdual. Das heißt, von innen nach außen geht es im gleichen Rhythmus wie hinein.

Das ergibt aber nun nicht einfach ein 11-gängiges Labyrinth wie wir es aus dem erweiterten Grundmuster erzeugen können.
Denn das sieht so aus:

Das 11-gängige Labyrinth aus dem Grundmuster

Das 11-gängige Labyrinth aus dem Grundmuster

Die Wegfolge hier ist: 5-2-3-4-1-6-11-8-9-10-7-12. Wir haben vier Wendepunkte mit verschachtelten Umgängen. Es liegt also ein anderes Prinzip der Konstruktion zugrunde als beim Chartres Labyrinth. Doch ist es selbstdual.


Nun wenden wir uns dem komplementären Labyrinth zu.

Das komplementäre Labyrinth wird erzeugt durch Spiegelung des Originals.
So sieht es dann aus:

Das komplementäre Chartres Labyrinth

Das komplementäre Chartres Labyrinth

Der Eintritt ins Labyrinth erfolgt auf dem 7. Umgang, der Eintritt in die Mitte geschieht vom 5. Umgang aus. Die Barrieren rechts und links sind anders angeordnet, die oberen bleiben. Es ist selbstdual.

Ohne Barrieren sieht es so aus:

Das komplementäre Chartres Labyrinth ohne die Barrieren

Das komplementäre Chartres Labyrinth ohne die Barrieren

Die Umwandlung funktioniert wieder, wie beim Original auch. Die Wegfolge lautet: 7-8-9-10-11-6-1-2-3-4-5-12. Auch dieses Labyrinth ist selbstdual.

Dem stellen wir wieder das komplementäre Labyrinth gegenüber, das aus dem Grundmuster erzeugt wurde.

Das 11-gängige komplementäre Labyrinth zum Grundmuster-Typ

Das 11-gängige komplementäre Labyrinth zum Grundmuster-Typ

Die Wegfolge hierzu lautet: 7-10-9-8-11-6-1-4-3-2-5-12.
Anders als das Original ist dieser Typ historisch noch nicht aufgetaucht.

Wir haben also aus dem Chartres Labyrinth zwei völlig neue 11-gängige Labyrinthe erzeugt, die anders aussehen als die bisher bekannten 11-gängigen Labyrinthe, die aus dem Grundmuster entwickelt werden können.

Verwandte Artikel

Advertisements

Read Full Post »

Ganz einfach: Durch Weglassen der Barrieren in den Nebenachsen. Beim Chartres Labyrinth habe ich das schon ausprobiert (siehe Verwandte Artikel unten). Aber geht das auch bei jedem anderen Mittelalterlichen Labyrinth?

In Teil 1 hatte ich das für den Typ Auxerre gemacht. Jetzt nehme ich den Typ Reims, das wie Chartres und Auxerre selbstdual ist. Und wieder die komplementäre Version. Als Darstellungsform wähle ich den konzentrischen Stil.

Das Reims Labyrinth

Das Reims Labyrinth

 

Hier das Original mit allen Linien und dem Weg im Labyrinth, dem Ariadnefaden. Die Querbalken in der oberen Hauptachse sind identisch mit denen im Typ Chartres, die Querbalken in den seitlichen Nebenachsen sind unterschiedlich von Chartres, wie auch die Anordnung der Wendepunkte an der Hauptachse unterhalb der Mitte.

Das Reims Labyrinth ohne die Barrieren

Das Reims Labyrinth ohne die Barrieren

Die Barrieren sind weggelassen. Beim Zeichnen des Ariadnefadens musste ich feststellen, dass vier Umgänge nicht einbezogen werden können. Das sind die beiden äußeren und die beiden inneren Umgänge (1, 2, 10, 11). Daher habe ich die Umgänge neu nummeriert und es bleiben nunmehr 7 Umgänge statt der ursprünglichen 11. Das bedeutet aber auch, dass bei der Umwandlung in ein konzentrisches klassisches Labyrinth durch diese Methode kein 11-gängiges Labyrinth erzeugt wird, sondern ein 7-gängiges.

Das kreisrunde 7-gängige Labyrinth

Das kreisrunde 7-gängige Labyrinth

Das ist ein bisher kaum bekanntes und genaugenommen auch uninteressantes Labyrinth. Denn ich betrete das Labyrinth auf dem ersten Umgang und in die Mitte komme ich vom letzten Umgang aus. Die Wegfolge ist ebenfalls sehr einfach: 1-2-3-4-5-6-7-8. Es geht einfach serpentinenförmig in die Mitte.


Nun wenden wir uns dem komplementären Labyrinth zu:

Das komplementäre Reims Labyrinth

Das komplementäre Reims Labyrinth

Das komplementäre Labyrinth wird erzeugt durch Spiegelung des Originals. Die oberen Barrieren bleiben, rechts und links verlaufen sie anders und in der Hauptachse verschieben sich die Wendepunkte. Der Eintritt ins Labyrinth wechselt zur Mitte hin (Umgang 9) und der Eintritt ins Zentrum erfolgt von weiter außen (Umgang 3).

Das komplementäre Reims Labyrinth ohne die Barrieren

Das komplementäre Reims Labyrinth ohne die Barrieren

Wie beim Original werden vier Umgänge nicht erfasst (1, 2, 10, 11). Daher ergibt sich wiederum ein 7-gängiges Labyrinth. Ich habe die Umgänge neu nummeriert und das Labyrinth neu gezeichnet.

So sieht es dann aus:

Das kreisrunde 7-gängige Labyrinth

Das kreisrunde 7-gängige Labyrinth

Der Eingang ins Labyrinth erfolgt auf dem 7. Umgang, der Eintritt in die Mitte vom 1. aus. Die Wegfolge lautet: 7-6-5-4-3-2-1-8. Dieses Labyrinth gehört nicht zu den historisch bekannten Labyrinthen. Es ist aber in diesem Blog schon aufgetaucht (siehe Verwandte Artikel unten).

Das Überraschende bei dieser Umwandlung ist, dass auch hier keine 11-gängigen klassischen Labyrinthe generiert werden konnten. Vielmehr zwei 7-gängige Labyrinthe.

Verwandte Artikel

Read Full Post »

Ganz einfach: Durch Weglassen der Barrieren in den Nebenachsen. Beim Chartres Labyrinth habe ich das schon ausprobiert (siehe Verwandte Artikel unten). Aber geht das auch bei jedem anderen Mittelalterlichen Labyrinth?

Als Beispiel habe ich den Typ Auxerre ausgesucht, den Andreas hier vor kurzem gezeigt hat. Dieses Labyrinth ist wie Chartres und Reims selbstdual, daher von besonderer Qualität. Und sie haben alle eine komplementäre Version.

Das Auxerre Labyrinth

Das Auxerre Labyrinth

Hier das Original mit allen Linien und dem Weg im Labyrinth, dem Ariadnefaden. Die Querbalken in den Nebenachsen sind identisch mit denen im Typ Chartres, nur an der Hauptachse in der Mitte unten gibt es eine andere Anordnung der Wendepunkte (die Umgänge 4, 5, 7, 8).

Das originale Auxerre Labyrinth ohne die Barrieren

Das originale Auxerre Labyrinth ohne die Barrieren

Die Barrieren sind weggelassen. Beim Zeichnen des Ariadnefadens musste ich feststellen, dass vier Umgänge nicht einbezogen werden können. Daher habe ich die Umgänge neu nummeriert und es bleiben nunmehr 7 Umgänge statt der ursprünglichen 11. Das bedeutet aber auch, dass bei der Umwandlung in ein konzentrisches klassisches Labyrinth durch diese Methode kein 11-gängiges Labyrinth erzeugt wird, sondern ein 7-gängiges.

Das 7-gängige kreisrunde kretische Labyrinth

Das 7-gängige kreisrunde kretische Labyrinth

Schaut man es genauer an, erkennt man die wohlbekannte Wegfolge: 3-2-1-4-7-6-5-8. Wir haben also ein kretisches Labyrinth vor uns, hier im konzentrischen Stil.


Nun wenden wir uns dem komplementären Labyrinth zu:

Das komplementäre Auxerre Labyrinth

Das komplementäre Auxerre Labyrinth

Das komplementäre Labyrinth wird erzeugt durch Spiegelung des Originals. Die oberen Barrieren bleiben, rechts und links verlaufen sie anders und in der Hauptachse verschieben sich die Wendepunkte. Der Eintritt ins Labyrinth wechselt zur Mitte hin (Umgang 9) und der Eintritt ins Zentrum erfolgt von weiter außen (Umgang 3).

Das komplementäre Auxerre Labyrinth ohne die Barrieren

Das komplementäre Auxerre Labyrinth ohne die Barrieren

Wie beim Original werden vier Umgänge nicht erfasst (4, 5, 7, 8). Daher ergibt sich wiederum ein 7-gängiges Labyrinth. Ich habe die Umgänge neu nummeriert und das Labyrinth neu gezeichnet.

So sieht es dann aus:

Das komplementäre 7-gängige kreisrunde kretische Labyrinth

Das komplementäre 7-gängige kreisrunde kretische Labyrinth

Der Eingang ins Labyrinth erfolgt auf dem 5. Umgang, der Eintritt in die Mitte vom 3. aus. Die Wegfolge ist: 5-6-7-4-1-2-3-8. Dieses Labyrinth gehört nicht zu den historisch bekannten Labyrinthen. Es ist aber in diesem Blog schon mehrfach aufgetaucht (siehe Verwandte Artikel unten). Denn es gehört zu den interessanten Labyrinthen unter den mathematisch möglichen 7-gängigen Labyrinthen.

Das Überraschende bei dieser Umwandlung ist, dass kein 11-gängiges klassisches Labyrinth generiert werden konnte. Dafür aber das 7-gängige kretische Labyrinth. Daher können wir sagen, dass auch im Herzen des mittelalterlichen Auxerre Labyrinths ein kretisches (Minoisches) steckt so wie im Chartres Labyrinth. kretisches Labyrinth.

Verwandte Artikel

Read Full Post »

Neben dem allgemein bekannten Labyrinth von Chartres und dem weniger populären Labyrinth von Reims ist noch ein drittes, wenig bekanntes, sehr interessantes (interessantes und selbstduales) mittelalterliches Labyrinth mit 4 Achsen und 11 Umgängen überliefert. Dieses stammt aus einer Handschrift, die in der städtischen Bibliothek von Auxerre aufbewahrt wird. Deshalb habe ich es mit Typ Auxerre benannt.

Zum Schluss möchte ich diese drei und die dazu komplementären Labyrinthe zeigen.

In den drei folgenden Abbildungen gehe ich jeweils vom originalen Labyrinth (Figur oben links) aus.

Daraus gewinne ich durch Entrollen des Ariadnefadens das Muster (Figur oben rechts).

Dann spiegle ich das Muster vertikal, ohne die Verbindungen zur Aussenwelt und zum Zentrum zu unterbrechen. Das ergibt das Muster des komplementären Labyrinths (Figur unten rechts).

Dieses rolle ich dann wieder ein und erhalte das komplementäre Labyrinth (Figur unten links).

Abb. 1 zeigt den Vorgang am Beispiel des Labyrinths von Auxerre. Dieses Labyrinth ist in Kern [1] nicht verzeichnet. Die Abbildung des originalen Labyrinths stammt von Saward [2] nach der Quelle von Wright [3].

Abbildung 1. Labyrinth von Auxerre und Komplementäres

Abb. 2 zeigt das Labyrinth von Reims und sein Komplementäres. Die Abbildung des originalen Labyrinths stammt von Kern.

Abbildung 2. Labyrinth von Reims und Komplementäres

Schliesslich werden in Abb. 3 das Labyrinth von Chartres und sein Komplementäres wiedergegeben. Die Abbildung des originalen Labyrinths stammt von Kern.

Abbildung 3. Labyrinth von Chartres und Komplementäres

Mit diesen Betrachtungen wollte ich darauf hinweisen, dass es drei historische Labyrinthe mit vergleichbarem Vollkommenheitsgrad gibt wie Chartres. Zusammen mit den dazu komplementären haben wir nun sechs sehr interessante Labyrinthe mit 4 Achsen, 11 Umgängen und ähnlichem Vollkommenheitsgrad vorliegen.

[1] Kern, H. Labyrinthe. 2. Auflage Prestel, München 1983.
[2] Saward J. Labyrinths and Mazes. Gaia, London 2003.
[3] Wright C. The Maze and the Warrior. Harvard University Press, Cambridge (Massachusetts) 2001.

Verwandte Beiträge:

Read Full Post »

Wie das Labyrinth von Ravenna ist auch das Wielandshaus Labyrinth ein historischer Labyrinth Typ mit 4 Achsen und 7 Umgängen. Es gibt sogar 2 verschiedene Wielandshaus-Labyrinthe (Abbildung 1).

Abbildung 1. Die beiden Typen Wielandshaus

Ich habe sie mit Wielandshaus 1 und Wielandshaus 2 benannt. Wielandshaus 1 stammt aus einer Handschrift des frühen 14. Jh., Wielandshaus 2 aus einer Handschrift des 15. Jh., beide von Island. Das kann man gut in Kern nachlesen. Ich beziehe mich im folgenden auf Wielandshaus 1.

Bei diesem Labyrinth Typ tritt der Weg nicht auf dem ersten Umgang ein und erreicht auch nicht das Zentrum vom letzten Umgang aus. Somit ist es ein interessantes Labyrinth. Und auch das dazu komplementäre ist ein interessantes Labyrinth. Aber das ist nicht der wichtigste Grund, warum ich diesen Labyrinth Typ und seine Verwandten hier zeige. Anders als beim Labyrinth von Ravenna, zu dem keine verwandten Labyrinthe bekannt sind, gibt es zu jedem Verwandten des Wielandshaus Labyrinths einen zeitgenössischen Labyrinth Typen.

In Abb. 2 sind die Muster des originalen Labyrinths vom Typ Wielandshaus (a), des dazu dualen (b), komplementären (c) und komplementär-dualen (d) wiedergegeben.

Abbildung 2. Die Verwandten des Typs Wielandshaus – Muster

Das originale (a) und duale (b) sind interessante Labyrinthe. Die dazu Komplementären (c) und (d) sind ebenfalls interessante Labyrinthe.

Abbildung 3 zeigt die den Mustern entsprechenden Labyrinthe in der Grundform mit den Begrenzungsmauern auf konzentrischem Grundriss und im Uhrzeigersinn drehend.

Abbildung 3. Die Verwandten des Typs Wielandshaus – Grundform

Die Verwandten des Typs Wielandshaus (a) sind drei der sogenannten neo-mediaevalen Labyrinth Typen (es gibt noch weitere neo-mediaevale Typen). Diese Verwandten sind: das Duale (b) = „Petit Chartres“ , das Komplementäre (c) = „ Santa Rosa“ und das komplementär-duale (d) = „World Peace“ Labyrinth.

Man kann also diese zeitgenössischen Verwandten einfach durch Drehen oder Spiegeln des Musters von Wielandshaus generieren. Damit will ich aber nicht behaupten, diese drei Labyrinth Typen seien von ihren Designern auf diese Weise absichtlich oder wissentlich aus dem Typ Wielandshaus abgeleitet worden. Ja, die vorhandenen Belege sprechen im Gegenteil dafür, dass sie in naiver Weise, d.h. ohne dass die Designer Kenntnis vom Zusammenhang mit dem Labyrinth vom Typ Wielandshaus hatten, entworfen worden sind. Aber faktisch sind sie dessen Verwandte.

Der Typ Wielandshaus hat zwar auf den ersten Blick gewisse Ähnlichkeiten mit dem Typ Chartres. Aber er ist nicht selbstdual und seine Wegführung folgt einem anderen Prinzip.  Und das gilt auch für seine Verwandten. Der Name „Petit Chartres“ scheint mir deshalb ungünstig gewählt. Er scheint wohl daher zu kommen, dass dieser Labyrinth Typ ursprünglich im Chartres Stil ausgeführt worden ist. Somit sieht es so aus, als wäre dieser Typ nach seinem Stil benannt worden.

Verwandte Beiträge:

Read Full Post »

Auch bei mehrachsigen Labyrinthen kommt es oft vor, dass ein Labyrinth interessant und das komplementäre uninteressant ist. Ein solches Beispiel ist das Labyrinth vom Typ Ravenna (Abbildung 1).

Abbildung 1. Das Labyrinth von Ravena

Dieses Labyrinth hat 4 Achsen und 7 Umgänge. Der Weg tritt auf dem innersten Umgang ein und erreicht das Zentrum vom fünften Umgang aus. Es ist somit ein interessantes Labyrinth. Der Labyrinth Typ ist nach dem Exemplar aus der Kirche San Vitale in Ravenna benannt. Speziell an diesem Exemplar ist die grafische Gestaltung des Weges. Dieser ist durch eine Folge von nach auswärts zeigenden Dreiecken markiert. Dadurch wird die Richtung aus dem Labyrinth heraus stark betont. Das steht im Gegensatz zur Weise wie wir gewöhnlich an ein Labyrinth herangehen und fordert geradezu heraus, das duale zu diesem Labyrinth aufzusuchen. Denn der Wegverlauf aus einem (originalen) Labyrinth heraus entspricht dem Wegverlauf in das duale Labyrinth hinein.

Als Verwandte eines (originalen) Labyrinths bezeichne ich das dazu duale, komplementäre und komplementär-duale Labyrinth. In Abb. 2 sind die Muster des originalen Labyrinths vom Typ Ravenna (a), des dualen (b), komplementären (c) und komplementär-dualen (d) wiedergegeben.

Abbildung 2. Die Verwandten des Typs Ravenna – Muster

Das originale (a) und duale (b) sind interessante Labyrinthe. Die dazu komplementären sind uninteressante Labyrinthe, da in diesen der Weg auf dem ersten Umgang ins Labyrinth eintritt (c) oder vom letzten Umgang aus das Zentrum erreicht (d). Das duale zu einem interessanten Labyrinth ist immer auch ein interessantes, das duale zu einem uninteressanten immer ein uninteressantes Labyrinth.

Abbildung 3 zeigt die den Mustern entsprechenden Labyrinthe in der Grundform mit den Begrenzungsmauern auf konzentrischem Grundriss und im Uhrzeigersinn drehend. Aktuell ist mir kein Exemplar eines zum Typ Ravenna (a) dualen (b), komplementären (c) oder komplementär-dualen (d) Labyrinths bekannt.

Abbildung 3. Die Verwandten des Typs Ravenna – Grundform

Aus diesen Grundformen sieht man gut, dass es seine Berechtigung hat, das komplementäre und das komplementär-duale Labyrinth als uninteressant zu bezeichnen. Die äusserste (Labyrinth c), respektive innerste (Labyrinth d) Begrenzungsmauer scheinen durchbrochen. Die Labyrinthe c und d wirken unvollkommener als das originale (a) und duale (b) Labyrinth, bei denen der Weg axial ins Labyrinth eintritt und das Zentrum erreicht.

Verwandte Beiträge:

Read Full Post »

Durch Drehen oder Spiegeln kommt man zu dualen und komplementären Labyrinthen bereits bestehender Labyrinthe. Oder anders ausgedrückt: Dadurch lassen sich weitere, neue Labyrinthe bilden.
So kann ich drei neue Labyrinthe erzeugen, denn vom neuen dualen Labyrinth kann ich wieder ein neues komplementäres erzeugen und vom neuen komplementären wieder ein neues duales, die aber identisch sind. (Genaueres darüber in den Verwandten Artikeln unten).

Unter diesen Aspekten habe ich die schon vorgestellten 21 Babylonischen Eingeweidelabyrinthe im Knidos Stil genauer angeschaut und stelle hier die für mich interessantesten Varianten vor. Denn nicht alle der möglichen dualen oder komplementären Exemplare scheinen bemerkenswert.

Viele, vor allem komplementäre, würden mit dem ersten Umgang beginnen und dem letzten zum Zentrum führen, was nicht so wünschenswert ist.

Auch durch Weglassen überflüssiger (trivialer) Umgänge lassen sich neue Exemplare generieren. Das trifft auf die beiden letzten Labyrinthe zu. Wenn Sie das erste mit dem letzten Exemplar vergleichen, sehen Sie zwei bemerkenswerte Labyrinthe: Das erste hat 12 Umgänge, das letzte 8 Umgänge; sie haben trotzdem einen ähnlichen Bewegungsverlauf.

Verwandte Artikel

Read Full Post »

Older Posts »

%d Bloggern gefällt das: