Feeds:
Beiträge
Kommentare

Posts Tagged ‘komplementär’

Ganz einfach: Durch Weglassen der Barrieren in den Nebenachsen. Beim Chartres Labyrinth habe ich das schon ausprobiert (siehe Verwandte Artikel unten). Aber geht das auch bei jedem anderen Mittelalterlichen Labyrinth?

Als Beispiel habe ich den Typ Auxerre ausgesucht, den Andreas hier vor kurzem gezeigt hat. Dieses Labyrinth ist wie Chartres und Reims selbstdual, daher von besonderer Qualität. Und sie haben alle eine komplementäre Version.

Das Auxerre Labyrinth

Das Auxerre Labyrinth

Hier das Original mit allen Linien und dem Weg im Labyrinth, dem Ariadnefaden. Die Querbalken in den Nebenachsen sind identisch mit denen im Typ Chartres, nur an der Hauptachse in der Mitte unten gibt es eine andere Anordnung der Wendepunkte (die Umgänge 4, 5, 7, 8).

Das originale Auxerre Labyrinth ohne die Barrieren

Das originale Auxerre Labyrinth ohne die Barrieren

Die Barrieren sind weggelassen. Beim Zeichnen des Ariadnefadens musste ich feststellen, dass vier Umgänge nicht einbezogen werden können. Daher habe ich die Umgänge neu nummeriert und es bleiben nunmehr 7 Umgänge statt der ursprünglichen 11. Das bedeutet aber auch, dass bei der Umwandlung in ein konzentrisches klassisches Labyrinth durch diese Methode kein 11-gängiges Labyrinth erzeugt wird, sondern ein 7-gängiges.

Das 7-gängige kreisrunde kretische Labyrinth

Das 7-gängige kreisrunde kretische Labyrinth

Schaut man es genauer an, erkennt man die wohlbekannte Wegfolge: 3-2-1-4-7-6-5-8. Wir haben also ein kretisches Labyrinth vor uns, hier im konzentrischen Stil.


Nun wenden wir uns dem komplementären Labyrinth zu:

Das komplementäre Auxerre Labyrinth

Das komplementäre Auxerre Labyrinth

Das komplementäre Labyrinth wird erzeugt durch Spiegelung des Originals. Die oberen Barrieren bleiben, rechts und links verlaufen sie anders und in der Hauptachse verschieben sich die Wendepunkte. Der Eintritt ins Labyrinth wechselt zur Mitte hin (Umgang 9) und der Eintritt ins Zentrum erfolgt von weiter außen (Umgang 3).

Das komplementäre Auxerre Labyrinth ohne die Barrieren

Das komplementäre Auxerre Labyrinth ohne die Barrieren

Wie beim Original werden vier Umgänge nicht erfasst (4, 5, 7, 8). Daher ergibt sich wiederum ein 7-gängiges Labyrinth. Ich habe die Umgänge neu nummeriert und das Labyrinth neu gezeichnet.

So sieht es dann aus:

Das komplementäre 7-gängige kreisrunde kretische Labyrinth

Das komplementäre 7-gängige kreisrunde kretische Labyrinth

Der Eingang ins Labyrinth erfolgt auf dem 5. Umgang, der Eintritt in die Mitte vom 3. aus. Die Wegfolge ist: 5-6-7-4-1-2-3-8. Dieses Labyrinth gehört nicht zu den historisch bekannten Labyrinthen. Es ist aber in diesem Blog schon mehrfach aufgetaucht (siehe Verwandte Artikel unten). Denn es gehört zu den interessanten Labyrinthen unter den mathematisch möglichen 7-gängigen Labyrinthen.

Das Überraschende bei dieser Umwandlung ist, dass kein 11-gängiges klassisches Labyrinth generiert werden konnte. Dafür aber das 7-gängige kretische Labyrinth. Daher können wir sagen, dass auch im Herzen des mittelalterlichen Auxerre Labyrinths ein kretisches (Minoisches) steckt so wie im Chartres Labyrinth. kretisches Labyrinth.

Verwandte Artikel

Advertisements

Read Full Post »

Neben dem allgemein bekannten Labyrinth von Chartres und dem weniger populären Labyrinth von Reims ist noch ein drittes, wenig bekanntes, sehr interessantes (interessantes und selbstduales) mittelalterliches Labyrinth mit 4 Achsen und 11 Umgängen überliefert. Dieses stammt aus einer Handschrift, die in der städtischen Bibliothek von Auxerre aufbewahrt wird. Deshalb habe ich es mit Typ Auxerre benannt.

Zum Schluss möchte ich diese drei und die dazu komplementären Labyrinthe zeigen.

In den drei folgenden Abbildungen gehe ich jeweils vom originalen Labyrinth (Figur oben links) aus.

Daraus gewinne ich durch Entrollen des Ariadnefadens das Muster (Figur oben rechts).

Dann spiegle ich das Muster vertikal, ohne die Verbindungen zur Aussenwelt und zum Zentrum zu unterbrechen. Das ergibt das Muster des komplementären Labyrinths (Figur unten rechts).

Dieses rolle ich dann wieder ein und erhalte das komplementäre Labyrinth (Figur unten links).

Abb. 1 zeigt den Vorgang am Beispiel des Labyrinths von Auxerre. Dieses Labyrinth ist in Kern [1] nicht verzeichnet. Die Abbildung des originalen Labyrinths stammt von Saward [2] nach der Quelle von Wright [3].

Abbildung 1. Labyrinth von Auxerre und Komplementäres

Abb. 2 zeigt das Labyrinth von Reims und sein Komplementäres. Die Abbildung des originalen Labyrinths stammt von Kern.

Abbildung 2. Labyrinth von Reims und Komplementäres

Schliesslich werden in Abb. 3 das Labyrinth von Chartres und sein Komplementäres wiedergegeben. Die Abbildung des originalen Labyrinths stammt von Kern.

Abbildung 3. Labyrinth von Chartres und Komplementäres

Mit diesen Betrachtungen wollte ich darauf hinweisen, dass es drei historische Labyrinthe mit vergleichbarem Vollkommenheitsgrad gibt wie Chartres. Zusammen mit den dazu komplementären haben wir nun sechs sehr interessante Labyrinthe mit 4 Achsen, 11 Umgängen und ähnlichem Vollkommenheitsgrad vorliegen.

[1] Kern, H. Labyrinthe. 2. Auflage Prestel, München 1983.
[2] Saward J. Labyrinths and Mazes. Gaia, London 2003.
[3] Wright C. The Maze and the Warrior. Harvard University Press, Cambridge (Massachusetts) 2001.

Verwandte Beiträge:

Read Full Post »

Wie das Labyrinth von Ravenna ist auch das Wielandshaus Labyrinth ein historischer Labyrinth Typ mit 4 Achsen und 7 Umgängen. Es gibt sogar 2 verschiedene Wielandshaus-Labyrinthe (Abbildung 1).

Abbildung 1. Die beiden Typen Wielandshaus

Ich habe sie mit Wielandshaus 1 und Wielandshaus 2 benannt. Wielandshaus 1 stammt aus einer Handschrift des frühen 14. Jh., Wielandshaus 2 aus einer Handschrift des 15. Jh., beide von Island. Das kann man gut in Kern nachlesen. Ich beziehe mich im folgenden auf Wielandshaus 1.

Bei diesem Labyrinth Typ tritt der Weg nicht auf dem ersten Umgang ein und erreicht auch nicht das Zentrum vom letzten Umgang aus. Somit ist es ein interessantes Labyrinth. Und auch das dazu komplementäre ist ein interessantes Labyrinth. Aber das ist nicht der wichtigste Grund, warum ich diesen Labyrinth Typ und seine Verwandten hier zeige. Anders als beim Labyrinth von Ravenna, zu dem keine verwandten Labyrinthe bekannt sind, gibt es zu jedem Verwandten des Wielandshaus Labyrinths einen zeitgenössischen Labyrinth Typen.

In Abb. 2 sind die Muster des originalen Labyrinths vom Typ Wielandshaus (a), des dazu dualen (b), komplementären (c) und komplementär-dualen (d) wiedergegeben.

Abbildung 2. Die Verwandten des Typs Wielandshaus – Muster

Das originale (a) und duale (b) sind interessante Labyrinthe. Die dazu Komplementären (c) und (d) sind ebenfalls interessante Labyrinthe.

Abbildung 3 zeigt die den Mustern entsprechenden Labyrinthe in der Grundform mit den Begrenzungsmauern auf konzentrischem Grundriss und im Uhrzeigersinn drehend.

Abbildung 3. Die Verwandten des Typs Wielandshaus – Grundform

Die Verwandten des Typs Wielandshaus (a) sind drei der sogenannten neo-mediaevalen Labyrinth Typen (es gibt noch weitere neo-mediaevale Typen). Diese Verwandten sind: das Duale (b) = „Petit Chartres“ , das Komplementäre (c) = „ Santa Rosa“ und das komplementär-duale (d) = „World Peace“ Labyrinth.

Man kann also diese zeitgenössischen Verwandten einfach durch Drehen oder Spiegeln des Musters von Wielandshaus generieren. Damit will ich aber nicht behaupten, diese drei Labyrinth Typen seien von ihren Designern auf diese Weise absichtlich oder wissentlich aus dem Typ Wielandshaus abgeleitet worden. Ja, die vorhandenen Belege sprechen im Gegenteil dafür, dass sie in naiver Weise, d.h. ohne dass die Designer Kenntnis vom Zusammenhang mit dem Labyrinth vom Typ Wielandshaus hatten, entworfen worden sind. Aber faktisch sind sie dessen Verwandte.

Der Typ Wielandshaus hat zwar auf den ersten Blick gewisse Ähnlichkeiten mit dem Typ Chartres. Aber er ist nicht selbstdual und seine Wegführung folgt einem anderen Prinzip.  Und das gilt auch für seine Verwandten. Der Name „Petit Chartres“ scheint mir deshalb ungünstig gewählt. Er scheint wohl daher zu kommen, dass dieser Labyrinth Typ ursprünglich im Chartres Stil ausgeführt worden ist. Somit sieht es so aus, als wäre dieser Typ nach seinem Stil benannt worden.

Verwandte Beiträge:

Read Full Post »

Auch bei mehrachsigen Labyrinthen kommt es oft vor, dass ein Labyrinth interessant und das komplementäre uninteressant ist. Ein solches Beispiel ist das Labyrinth vom Typ Ravenna (Abbildung 1).

Abbildung 1. Das Labyrinth von Ravena

Dieses Labyrinth hat 4 Achsen und 7 Umgänge. Der Weg tritt auf dem innersten Umgang ein und erreicht das Zentrum vom fünften Umgang aus. Es ist somit ein interessantes Labyrinth. Der Labyrinth Typ ist nach dem Exemplar aus der Kirche San Vitale in Ravenna benannt. Speziell an diesem Exemplar ist die grafische Gestaltung des Weges. Dieser ist durch eine Folge von nach auswärts zeigenden Dreiecken markiert. Dadurch wird die Richtung aus dem Labyrinth heraus stark betont. Das steht im Gegensatz zur Weise wie wir gewöhnlich an ein Labyrinth herangehen und fordert geradezu heraus, das duale zu diesem Labyrinth aufzusuchen. Denn der Wegverlauf aus einem (originalen) Labyrinth heraus entspricht dem Wegverlauf in das duale Labyrinth hinein.

Als Verwandte eines (originalen) Labyrinths bezeichne ich das dazu duale, komplementäre und komplementär-duale Labyrinth. In Abb. 2 sind die Muster des originalen Labyrinths vom Typ Ravenna (a), des dualen (b), komplementären (c) und komplementär-dualen (d) wiedergegeben.

Abbildung 2. Die Verwandten des Typs Ravenna – Muster

Das originale (a) und duale (b) sind interessante Labyrinthe. Die dazu komplementären sind uninteressante Labyrinthe, da in diesen der Weg auf dem ersten Umgang ins Labyrinth eintritt (c) oder vom letzten Umgang aus das Zentrum erreicht (d). Das duale zu einem interessanten Labyrinth ist immer auch ein interessantes, das duale zu einem uninteressanten immer ein uninteressantes Labyrinth.

Abbildung 3 zeigt die den Mustern entsprechenden Labyrinthe in der Grundform mit den Begrenzungsmauern auf konzentrischem Grundriss und im Uhrzeigersinn drehend. Aktuell ist mir kein Exemplar eines zum Typ Ravenna (a) dualen (b), komplementären (c) oder komplementär-dualen (d) Labyrinths bekannt.

Abbildung 3. Die Verwandten des Typs Ravenna – Grundform

Aus diesen Grundformen sieht man gut, dass es seine Berechtigung hat, das komplementäre und das komplementär-duale Labyrinth als uninteressant zu bezeichnen. Die äusserste (Labyrinth c), respektive innerste (Labyrinth d) Begrenzungsmauer scheinen durchbrochen. Die Labyrinthe c und d wirken unvollkommener als das originale (a) und duale (b) Labyrinth, bei denen der Weg axial ins Labyrinth eintritt und das Zentrum erreicht.

Verwandte Beiträge:

Read Full Post »

Durch Drehen oder Spiegeln kommt man zu dualen und komplementären Labyrinthen bereits bestehender Labyrinthe. Oder anders ausgedrückt: Dadurch lassen sich weitere, neue Labyrinthe bilden.
So kann ich drei neue Labyrinthe erzeugen, denn vom neuen dualen Labyrinth kann ich wieder ein neues komplementäres erzeugen und vom neuen komplementären wieder ein neues duales, die aber identisch sind. (Genaueres darüber in den Verwandten Artikeln unten).

Unter diesen Aspekten habe ich die schon vorgestellten 21 Babylonischen Eingeweidelabyrinthe im Knidos Stil genauer angeschaut und stelle hier die für mich interessantesten Varianten vor. Denn nicht alle der möglichen dualen oder komplementären Exemplare scheinen bemerkenswert.

Viele, vor allem komplementäre, würden mit dem ersten Umgang beginnen und dem letzten zum Zentrum führen, was nicht so wünschenswert ist.

Auch durch Weglassen überflüssiger (trivialer) Umgänge lassen sich neue Exemplare generieren. Das trifft auf die beiden letzten Labyrinthe zu. Wenn Sie das erste mit dem letzten Exemplar vergleichen, sehen Sie zwei bemerkenswerte Labyrinthe: Das erste hat 12 Umgänge, das letzte 8 Umgänge; sie haben trotzdem einen ähnlichen Bewegungsverlauf.

Verwandte Artikel

Read Full Post »

Unter den einachsigen Labyrinthen haben wir keine Paare von zueinander komplementären uninteressanten Labyrinthen gefunden (siehe verwandte Beiträge, unten). Bei mehrachsigen Labyrinthen gibt es aber solche Paare. Jedenfalls, wenn wir Labyrinthe als uninteressant bezeichnen, bei denen der Weg auf dem äussersten Umgang ins Labyrinth eintritt oder vom innersten Umgang aus das Zentrum erreicht. Das wird am folgenden Beispiel gezeigt (Abbildung 1).

Abbildung 1. Komplementäre uninteressante Labyrinthe

Das Labyrinth a hat 2 Achsen und 3 Umgänge. Der Weg tritt auf dem äussersten Umgang ein. Deshalb ist es ein uninteressantes Labyrinth. Der Weg erreicht das Zentrum vom äussersten Umgang aus.

Das Komplementäre davon, Labyrinth b, ist ebenfalls ein uninteressantes Labyrinth. Hier tritt der Weg auf dem innersten Umgang ins Labyrinth ein und erreicht das Zentrum vom innersten Umgang aus.

Das ist soweit nichts Besonderes. Aber hier kommt eine andere Besonderheit zum Vorschein. Wir sehen das, wenn wir auch noch die beiden Dualen dieser Labyrinthe betrachten. Dies wird in Abb. 2 auf die schon bekannte Art gezeigt.

Abbildung 2. Das duale und komplementäre Labyrinth sind gleich

Das zum Originalen (a) Duale (b) ist gleich dem Komplementären (c). Das zum Komplementären (c) Duale (d) ist gleich dem Originalen (a). Die beiden zu einander komplementär-dualen Labyrinthe sind gleich.

Dies gilt nun nicht für alle Paare von komplementären uninteressanten Labyrinthen. Aber es gibt noch andere Labyrinthe, bei denen das auch zutrifft. In Abb. 3 zeige ich zwei weitere solche Labyrinth Exemplare und ihre Muster (nur Originale). Auch bei diesen sind die komplementären gleich den dualen Labyrinthen.

Abbildung 3. Weitere Labyrinthe mit dieser Eigenschaft

Verwandte Beiträge:

Read Full Post »

Unter den einachsigen Labyrinthen bis und mit 7 Umgängen gibt es keine zwei zu einander komplementäre uninteressante Labyrinthe. Das liegt daran, dass bei solchen Labyrinthen immer der Weg auf dem äussersten Umgang eintritt oder vom innersten Umgang das Zentrum erreicht (siehe verwandte Beiträge, unten). Aber es gibt uninteressante Labyrinthe mit mehr als 7 Umgängen bei denen dies nicht der Fall ist.

Um dies zu zeigen, beginne ich mit dem Beispiel des 11-gängigen Cakra-Vyuh Labyrinths (siehe verwandte Beiträge). Abbildung 1 zeigt dieses Labyrinth und sein Muster.

Abbildung 1. Das 11-gängige Cakra Vyuh Labyrinth

Wie man sieht, biegt der Weg auf dem ersten Umgang ins Labyrinth ein und erreicht das Zentrum vom innersten Umgang aus. Man kann also den äussersten und innersten Umgang einfach abschneiden (graue Linien in der rechten Figur). Dann erhält man ein 9-gängiges Labyrinth, bei dem der Weg nicht auf dem äussersten Umgang einbiegt und auch nicht das Ziel vom innersten Umgang aus erreicht. Das Muster dieses Labyrinths ist in Abbildung 2 dargestellt.

Abbildung 2. Das Muster des 9-gängigen uninteressanten Labyrinths

Durch das Entfernen der grauen Umgänge verläuft das Muster nun von rechts oben nach links unten. Will man es in der gewohnten Weise darstellen, also von links oben nach rechts unten, muss man es horizontal spiegeln. Das ändert nichts am Muster und auch nichts an dem zugrunde liegenden Labyrinth, ausser, dass das Labyrinth seine Drehrichtung ändert (siehe verwandte Beiträge).

Obwohl nun der Weg auf dem 3. Umgang einbiegt und vom 7. Umgang aus das Zentrum erreicht, ist dies ein uninteressantes Labyrinth. Denn es besteht aus zwei Elementen vom Typ Knossos auf den Umgängen 1 – 3 und 7 – 9 (angedeutet mit Klammern in der rechten Figur) und drei dazwischen liegenden trivialen Umgängen 4, 5, 6 (mit Strichen angedeutet). Dieses Labyrinth ist zwar uninteressant, aber selbstdual.

Zwischenbemerkung: Dieses Labyrinth hat Ähnlichkeit mit dem allseits bekannten Grundtyp (vormals: Kretischen Typ). Aber der Grundtyp ist ein sehr interessantes (d.h. interessantes und selbstduales) Labyrinth.

Abbildung 3. Das Muster des Grundtyps

Er besteht, wie Abb. 3 zeigt, ebenfalls aus zwei Elementen vom Typ Knossos. Dazwischen liegt aber nur ein Umgang. Und dieser ist auch keineswegs trivial, sondern wird benötigt, um die beiden Elemente zu verbinden. Fügt man aber weitere Umgänge serpentinenförmig hinzu, entsteht dann ein uninteressantes Labyrinth.

Zurück zum uninteressanten Labyrinth mit 9 Umgängen. Wie sieht nun das dazu komplementäre Labyrinth aus? Ist es vielleicht auch ein uninteressantes Labyrinth?

Abbildung 4. Die beiden komplementären 9-gängigen Labyrinthe

Um das Komplementäre zu erhalten, spiegeln wir das originale Labyrinth vertikal und lassen die Verbindungen zur Aussenwelt und zum Zentrum bestehen. Der Weg tritt nun auf dem 7. Umgang ein und erreicht das Zentrum vom 3. Umgang aus. Die drei internen trivialen Umgänge sind nach wie vor erkennbar. Aber sie sind umhüllt von den axialen Wegstücken, die ins Labyrinth und zum Zentrum führen. So sind sie eine Ebene tiefer verschachtelt. Das führt nun dazu, dass dieses nicht ein uninteressantes, sondern ein interessantes, und, da selbstdual, ein sehr interessantes Labyrinth ist.

Es scheint also auch bei grösseren Labyrinthen keine zwei zu einander komplementäre uninteressante Labyrinthe zu geben.

Verwandte Beiträge:

 

Read Full Post »

Older Posts »

%d Bloggern gefällt das: