Feeds:
Beiträge
Kommentare

Posts Tagged ‘Wegfolge’

In meinen letzten Beiträgen hatte ich die Methode der Umwandlung vom Mittelalterlichen Labyrinth durch Weglassen der Barrieren aufgezeigt.

Die erste Möglichkeit um Labyrinthe zu generieren ist natürlich die Verwendung des Grundmusters. So sind die meisten skandinavischen Trojaburgen mit 7, 11 oder 15 Umgängen erzeugt worden.

Vor einigen Jahren hatte ich mit der Mäandertechnik beschäftigt. Dabei sind schon viele neue, bisher unbekannte Labyrinthe entstanden.

Ein weitere Möglichkeit hat Andreas in seinen Beiträgen zu den dualen und komplementären Labyrinthen aufgezeigt. Da werden durch Rotieren und Spiegeln neue Versionen von schon bekannten Typen erzeugt.

Diese Technik will ich nun verwenden, um einige neue Varianten vorzustellen.

Dabei beziehe ich mich auf einachsige, alternierende Labyrinthe. Diese Bezeichnung verwendet Tony Phillips in seinen Ausführungen als Mathematiker zum Labyrinth. Er nennt auch die Anzahl der theoretisch möglichen Varianten von 11-gängigen interessanten Labyrinthen: 1014 Stück.

Die theoretisch möglichen interessanten Varianten der 3-, bis 7-gängigen Labyrinthe sind in diesem Blog schon alle einmal aufgetaucht.

Ich konstruiere die hier gezeigten Beispiele im konzentrischen Stil. Aufgrund der Wegfolge (= Umgangsfolge) lässt sich das relativ einfach bewerkstelligen. Man benötigt kein Muster dazu. Die Wegfolge ist auch das Unterscheidungsmerkmal der verschiedenen Varianten.

Ich beginne mit dem gut bekannten 11-gängigen klassischen Labyrinth, das aus dem Grundmuster erzeugt werden kann:

Das 11-gängige Labyrinth nach dem Muster

Das 11-gängige Labyrinth nach dem Muster

Um das duale Exemplar davon zu erzeugen, nummeriere ich die einzelnen Umgänge von innen nach außen, gehe dann von innen nach außen und schreibe dazu die Wegfolge auf. Es ergibt sich: 5-2-3-4-1-6-11-8-9-10-7-(12).
Diese ist in diesem Fall identisch mit dem Original, es entsteht also kein neues Labyrinth. Daher ist dieses Labyrinth selbstdual. Das wiederum zeugt von einer besonderen Qualität dieses Typs.

Jetzt erzeuge ich das komplementäre Exemplar. Dazu ergänze ich die einzelnen Ziffern der Wegfolge zur Ziffer des Zentrums „12“.
5-2-3-4-1-6-11-8-9-10-7
7-10-9-8-11-6-1-4-3-2-5
Die einzelnen Werte der Reihe oben und unten addiert, ergibt jeweils 12.

Oder, ich lese die Wegfolge rückwärts. Das bringt die gleiche neue Wegfolge. Doch so direkt geht das nur bei selbstdualen Labyrinthen.

Zu dieser Wegfolge 7-10-9-8-11-6-1-4-3-2-5-12 zeichne ich nun ein Labyrinth.
So sieht es aus:

Das komplementäre 11-gängige Labyrinth nach dem Muster

Das komplementäre 11-gängige Labyrinth nach dem Muster

Dieses neue Labyrinth ist bisher kaum bekannt.


Jetzt nehme ich ein anderes schon einmal im Blog gezeigtes Labyrinth, das mit Mäandertechnik erzeugt wurde, jedoch ein nicht-selbstduales.

Das originale 11-gängige Labyrinth aus Mäandertechnik

Das originale 11-gängige Labyrinth aus Mäandertechnik

Zuerst ermittle ich die Wegfolge für das duale Labyrinth, indem ich von innen nach außen gehe. Und erhalte: 7-2-5-4-3-6-1-8-11-10-9-(12).

Danach konstruiere ich nach dieser Wegfolge das duale Labyrinth.
So sieht es dann aus:

Das duale 11-gängige Labyrinth

Das duale 11-gängige Labyrinth

Jetzt kann ich jeweils zu beiden vorgenannten Labyrinthen die komplementären Exemplare generieren.

Obere Reihe das Original. Untere Reihe das komplementäre.
3-2-1-4-11-6-9-8-7-10-5
9-10-11-8-1-6-3-4-5-2-7
Die untere Reihe erzeugt durch Ergänzen der oberen zu „12“.

Das komplementäre Labyrinth sieht wie folgt aus:

Das komplementäre Labyrinth zum Original

Das komplementäre Labyrinth zum Original

Nun die Wegfolge des dualen in der oberen Reihe. Das dazu komplementäre in der unteren.
7-2-5-4-3-6-1-8-11-10-9
5-10-7-8-9-6-11-4-1-2-3
Wieder ermittelt durch Ergänzung zu „12“.

Das sieht so aus:

Das komplementäre Labyrinth zum dualen

Das komplementäre Labyrinth zum dualen

Ich habe also drei neue Labyrinthe zu einem schon bekannten hinzugewonnen. Bei einem sebstdualen Labyrinth erhalte ich dagegen nur ein neues dazu.

Nun kann ich das Spielchen noch weitertreiben. Auch für die neu erzeugten komplementären Labyrinthe könnte ich wieder duale Labyrinthe erzeugen, indem ich von innen nach außen nummeriere.

Das duale des komplementären zum Original ergibt das komplementäre des dualen. Und das duale des komplementären zum dualen ergibt das komplementäre des Originals.

Die nebeneinander geschriebenen Wegfolgen verdeutlichen das. Oben stehen das Original (links) und das duale (rechts).
Unten stehen die komplementären, links das komplementäre zum Original. Und rechts das komplementäre zum dualen.

3-2-1-4-11-6-9-8-7-10-5  *  7-2-5-4-3-6-1-8-11-10-9
9-10-11-8-1-6-3-4-5-2-7  *  5-10-7-8-9-6-11-4-1-2-3

Die oberen und die unteren einzelnen Ziffern addiert, ergibt jeweils „12“.

Auch kann man erkennen, dass die über Kreuz gelesenen Wegfolgen zueinander rückwärts verlaufen.

Diese Eigenschaften kann ich auch nutzen, wenn ich neue Labyrinthe  erzeugen will. Indem ich die Wegfolgen des Originals und des dualen rückwärts interpretiere, erzeuge ich zum Original das komplementäre des dualen, und zum dualen das komplementäre des Originals. Und umgekehrt.

Wenn ich eine einzige Wegfolge habe, kann ich so die übrigen drei rein rechnerisch ermitteln.

Klingt verwirrend, ist es auch, denn wir reden von Labyrinthen.

Zum besseren Verstehen am besten selbst ausprobieren oder den Artikel (Die Umgangsfolgen … siehe unten) von Andreas zu diesem Thema aufmerksam studieren.

Verwandte Artikel

Advertisements

Read Full Post »

Ganz einfach: Durch Weglassen der Barrieren in den Nebenachsen. Beim Chartres Labyrinth habe ich das vor Jahren schon einmal ausprobiert. Und in den letzten beiden Beiträgen zu diesem Thema bei den Typen Auxerre und Reims. Siehe dazu die Verwandten Artikel unten.

Heute soll noch einmal der Chartres Typ behandelt werden. Hier das Original in wesentlicher Form, im konzentrischem Stil.

Das Chartres Labyrinth

Das Chartres Labyrinth

Das Original mit allen Linien und dem Weg im Labyrinth, dem Ariadnefaden. Die Zacken und das sechsblättrige Element in der Mitte gehören zum Stil Chartres und sind hier weggelassen.

Nun ohne die Barrieren in den Nebenachsen.

Das Chartres Labyrinth ohne die Barrieren

Das Chartres Labyrinth ohne die Barrieren

Anders als bei den Typen Auxerre und Reims können alle Umgänge in das nun entstehende Labyrinth einbezogen werden. Die Wegfolge ist: 5-4-3-2-1-6-11-10-9-8-7-12. Wir haben acht Wendepunkte mit gestapelten Umgängen. Es ist selbstdual. Das heißt, von innen nach außen geht es im gleichen Rhythmus wie hinein.

Das ergibt aber nun nicht einfach ein 11-gängiges Labyrinth wie wir es aus dem erweiterten Grundmuster erzeugen können.
Denn das sieht so aus:

Das 11-gängige Labyrinth aus dem Grundmuster

Das 11-gängige Labyrinth aus dem Grundmuster

Die Wegfolge hier ist: 5-2-3-4-1-6-11-8-9-10-7-12. Wir haben vier Wendepunkte mit verschachtelten Umgängen. Es liegt also ein anderes Prinzip der Konstruktion zugrunde als beim Chartres Labyrinth. Doch ist es selbstdual.


Nun wenden wir uns dem komplementären Labyrinth zu.

Das komplementäre Labyrinth wird erzeugt durch Spiegelung des Originals.
So sieht es dann aus:

Das komplementäre Chartres Labyrinth

Das komplementäre Chartres Labyrinth

Der Eintritt ins Labyrinth erfolgt auf dem 7. Umgang, der Eintritt in die Mitte geschieht vom 5. Umgang aus. Die Barrieren rechts und links sind anders angeordnet, die oberen bleiben. Es ist selbstdual.

Ohne Barrieren sieht es so aus:

Das komplementäre Chartres Labyrinth ohne die Barrieren

Das komplementäre Chartres Labyrinth ohne die Barrieren

Die Umwandlung funktioniert wieder, wie beim Original auch. Die Wegfolge lautet: 7-8-9-10-11-6-1-2-3-4-5-12. Auch dieses Labyrinth ist selbstdual.

Dem stellen wir wieder das komplementäre Labyrinth gegenüber, das aus dem Grundmuster erzeugt wurde.

Das 11-gängige komplementäre Labyrinth zum Grundmuster-Typ

Das 11-gängige komplementäre Labyrinth zum Grundmuster-Typ

Die Wegfolge hierzu lautet: 7-10-9-8-11-6-1-4-3-2-5-12.
Anders als das Original ist dieser Typ historisch noch nicht aufgetaucht.

Wir haben also aus dem Chartres Labyrinth zwei völlig neue 11-gängige Labyrinthe erzeugt, die anders aussehen als die bisher bekannten 11-gängigen Labyrinthe, die aus dem Grundmuster entwickelt werden können.

Verwandte Artikel

Read Full Post »

Ganz einfach: Durch Weglassen der Barrieren in den Nebenachsen. Beim Chartres Labyrinth habe ich das schon ausprobiert (siehe Verwandte Artikel unten). Aber geht das auch bei jedem anderen Mittelalterlichen Labyrinth?

In Teil 1 hatte ich das für den Typ Auxerre gemacht. Jetzt nehme ich den Typ Reims, das wie Chartres und Auxerre selbstdual ist. Und wieder die komplementäre Version. Als Darstellungsform wähle ich den konzentrischen Stil.

Das Reims Labyrinth

Das Reims Labyrinth

 

Hier das Original mit allen Linien und dem Weg im Labyrinth, dem Ariadnefaden. Die Querbalken in der oberen Hauptachse sind identisch mit denen im Typ Chartres, die Querbalken in den seitlichen Nebenachsen sind unterschiedlich von Chartres, wie auch die Anordnung der Wendepunkte an der Hauptachse unterhalb der Mitte.

Das Reims Labyrinth ohne die Barrieren

Das Reims Labyrinth ohne die Barrieren

Die Barrieren sind weggelassen. Beim Zeichnen des Ariadnefadens musste ich feststellen, dass vier Umgänge nicht einbezogen werden können. Das sind die beiden äußeren und die beiden inneren Umgänge (1, 2, 10, 11). Daher habe ich die Umgänge neu nummeriert und es bleiben nunmehr 7 Umgänge statt der ursprünglichen 11. Das bedeutet aber auch, dass bei der Umwandlung in ein konzentrisches klassisches Labyrinth durch diese Methode kein 11-gängiges Labyrinth erzeugt wird, sondern ein 7-gängiges.

Das kreisrunde 7-gängige Labyrinth

Das kreisrunde 7-gängige Labyrinth

Das ist ein bisher kaum bekanntes und genaugenommen auch uninteressantes Labyrinth. Denn ich betrete das Labyrinth auf dem ersten Umgang und in die Mitte komme ich vom letzten Umgang aus. Die Wegfolge ist ebenfalls sehr einfach: 1-2-3-4-5-6-7-8. Es geht einfach serpentinenförmig in die Mitte.


Nun wenden wir uns dem komplementären Labyrinth zu:

Das komplementäre Reims Labyrinth

Das komplementäre Reims Labyrinth

Das komplementäre Labyrinth wird erzeugt durch Spiegelung des Originals. Die oberen Barrieren bleiben, rechts und links verlaufen sie anders und in der Hauptachse verschieben sich die Wendepunkte. Der Eintritt ins Labyrinth wechselt zur Mitte hin (Umgang 9) und der Eintritt ins Zentrum erfolgt von weiter außen (Umgang 3).

Das komplementäre Reims Labyrinth ohne die Barrieren

Das komplementäre Reims Labyrinth ohne die Barrieren

Wie beim Original werden vier Umgänge nicht erfasst (1, 2, 10, 11). Daher ergibt sich wiederum ein 7-gängiges Labyrinth. Ich habe die Umgänge neu nummeriert und das Labyrinth neu gezeichnet.

So sieht es dann aus:

Das kreisrunde 7-gängige Labyrinth

Das kreisrunde 7-gängige Labyrinth

Der Eingang ins Labyrinth erfolgt auf dem 7. Umgang, der Eintritt in die Mitte vom 1. aus. Die Wegfolge lautet: 7-6-5-4-3-2-1-8. Dieses Labyrinth gehört nicht zu den historisch bekannten Labyrinthen. Es ist aber in diesem Blog schon aufgetaucht (siehe Verwandte Artikel unten).

Das Überraschende bei dieser Umwandlung ist, dass auch hier keine 11-gängigen klassischen Labyrinthe generiert werden konnten. Vielmehr zwei 7-gängige Labyrinthe.

Verwandte Artikel

Read Full Post »

Ganz einfach: Durch Weglassen der Barrieren in den Nebenachsen. Beim Chartres Labyrinth habe ich das schon ausprobiert (siehe Verwandte Artikel unten). Aber geht das auch bei jedem anderen Mittelalterlichen Labyrinth?

Als Beispiel habe ich den Typ Auxerre ausgesucht, den Andreas hier vor kurzem gezeigt hat. Dieses Labyrinth ist wie Chartres und Reims selbstdual, daher von besonderer Qualität. Und sie haben alle eine komplementäre Version.

Das Auxerre Labyrinth

Das Auxerre Labyrinth

Hier das Original mit allen Linien und dem Weg im Labyrinth, dem Ariadnefaden. Die Querbalken in den Nebenachsen sind identisch mit denen im Typ Chartres, nur an der Hauptachse in der Mitte unten gibt es eine andere Anordnung der Wendepunkte (die Umgänge 4, 5, 7, 8).

Das originale Auxerre Labyrinth ohne die Barrieren

Das originale Auxerre Labyrinth ohne die Barrieren

Die Barrieren sind weggelassen. Beim Zeichnen des Ariadnefadens musste ich feststellen, dass vier Umgänge nicht einbezogen werden können. Daher habe ich die Umgänge neu nummeriert und es bleiben nunmehr 7 Umgänge statt der ursprünglichen 11. Das bedeutet aber auch, dass bei der Umwandlung in ein konzentrisches klassisches Labyrinth durch diese Methode kein 11-gängiges Labyrinth erzeugt wird, sondern ein 7-gängiges.

Das 7-gängige kreisrunde kretische Labyrinth

Das 7-gängige kreisrunde kretische Labyrinth

Schaut man es genauer an, erkennt man die wohlbekannte Wegfolge: 3-2-1-4-7-6-5-8. Wir haben also ein kretisches Labyrinth vor uns, hier im konzentrischen Stil.


Nun wenden wir uns dem komplementären Labyrinth zu:

Das komplementäre Auxerre Labyrinth

Das komplementäre Auxerre Labyrinth

Das komplementäre Labyrinth wird erzeugt durch Spiegelung des Originals. Die oberen Barrieren bleiben, rechts und links verlaufen sie anders und in der Hauptachse verschieben sich die Wendepunkte. Der Eintritt ins Labyrinth wechselt zur Mitte hin (Umgang 9) und der Eintritt ins Zentrum erfolgt von weiter außen (Umgang 3).

Das komplementäre Auxerre Labyrinth ohne die Barrieren

Das komplementäre Auxerre Labyrinth ohne die Barrieren

Wie beim Original werden vier Umgänge nicht erfasst (4, 5, 7, 8). Daher ergibt sich wiederum ein 7-gängiges Labyrinth. Ich habe die Umgänge neu nummeriert und das Labyrinth neu gezeichnet.

So sieht es dann aus:

Das komplementäre 7-gängige kreisrunde kretische Labyrinth

Das komplementäre 7-gängige kreisrunde kretische Labyrinth

Der Eingang ins Labyrinth erfolgt auf dem 5. Umgang, der Eintritt in die Mitte vom 3. aus. Die Wegfolge ist: 5-6-7-4-1-2-3-8. Dieses Labyrinth gehört nicht zu den historisch bekannten Labyrinthen. Es ist aber in diesem Blog schon mehrfach aufgetaucht (siehe Verwandte Artikel unten). Denn es gehört zu den interessanten Labyrinthen unter den mathematisch möglichen 7-gängigen Labyrinthen.

Das Überraschende bei dieser Umwandlung ist, dass kein 11-gängiges klassisches Labyrinth generiert werden konnte. Dafür aber das 7-gängige kretische Labyrinth. Daher können wir sagen, dass auch im Herzen des mittelalterlichen Auxerre Labyrinths ein kretisches (Minoisches) steckt so wie im Chartres Labyrinth. kretisches Labyrinth.

Verwandte Artikel

Read Full Post »

Durch Drehen oder Spiegeln kommt man zu dualen und komplementären Labyrinthen bereits bestehender Labyrinthe. Oder anders ausgedrückt: Dadurch lassen sich weitere, neue Labyrinthe bilden.
So kann ich drei neue Labyrinthe erzeugen, denn vom neuen dualen Labyrinth kann ich wieder ein neues komplementäres erzeugen und vom neuen komplementären wieder ein neues duales, die aber identisch sind. (Genaueres darüber in den Verwandten Artikeln unten).

Unter diesen Aspekten habe ich die schon vorgestellten 21 Babylonischen Eingeweidelabyrinthe im Knidos Stil genauer angeschaut und stelle hier die für mich interessantesten Varianten vor. Denn nicht alle der möglichen dualen oder komplementären Exemplare scheinen bemerkenswert.

Viele, vor allem komplementäre, würden mit dem ersten Umgang beginnen und dem letzten zum Zentrum führen, was nicht so wünschenswert ist.

Auch durch Weglassen überflüssiger (trivialer) Umgänge lassen sich neue Exemplare generieren. Das trifft auf die beiden letzten Labyrinthe zu. Wenn Sie das erste mit dem letzten Exemplar vergleichen, sehen Sie zwei bemerkenswerte Labyrinthe: Das erste hat 12 Umgänge, das letzte 8 Umgänge; sie haben trotzdem einen ähnlichen Bewegungsverlauf.

Verwandte Artikel

Read Full Post »

Genauer gesagt, geht es hier um die aus einigen vorherigen Beiträgen (dazu die Verwandten Artikel unten) schon bekannten 21 reihenförmig angeordneten Eingeweidelabyrinthe.

Das Aussehen wird bestimmt durch die Weg- oder Umgangsfolge. Danach lassen sich die (hier 21) verschiedenen und neuen Labyrinth-Typen konstruieren. Dazu verwende ich die schon einmal vorgestellte Methode, ein Labyrinth zu zeichnen (siehe unten).

Der Weg und die Begrenzung sind gleich breit. Die Mitte ist größer. Das letzte Wegstück führt senkrecht in das Zentrum. Alle Elemente schließen knickfrei und geometrisch korrekt aneinander an. Es gibt nur Geraden und Bögen. Alles auf möglichst kleinem Raum. Das zusammen macht den Knidos Stil aus.

Sie können ein einzelnes Bild in einer größeren Version anschauen durch Anklicken mit der Maus:

Ich finde, dass durch diesen Stil der Bewegungsverlauf eines jeden Labyrinths besonders gut erkennbar wird. Damit lassen sie sich vielleicht auch leichter mit den schon bekannten Labyrinthen vergleichen.

Bemerkenswert für mich ist, dass nur ein Exemplar (E 3384 v_6) mit dem ersten Umgang beginnt. Und dass viele zuerst und direkt die Mitte umkreisen und schließlich vom ersten Umgang aus direkt die Mitte erreicht wird. Auffällig sind auch die vielen senkrechten, geraden und parallelen Wegstücke im Mittelteil.

Verwandte Artikel

Read Full Post »

Hier geht es um die Dechiffrierung der Umgangsfolgen der reihenförmigen 21 Babylonischen Eingeweidelabyrinthe aus dem letzten Artikel zu diesem Thema (siehe verwandte Artikel unten).

Die Frage lautet: Lassen sich daraus einachsige alternierende Labyrinthe mit einem Ziel in der Mitte erzeugen? Also keine Durchgangslabyrinthe, wo der auch eindeutige Weg hindurchführt, sondern in ein Zentrum mündet.
Vielleich könnte man sie als „Hinein-Labyrinthe“ bezeichnen im Gegensatz zu den „Hindurch-Labyrinthen“?

Die kurze Antwort: Ja, es geht. Und es entstehen 21 neue, bisher unbekannte Labyrinthe.

Die Umgangsfolge für ein Durchgangslabyrinthe lässt sich umwandeln in eine für ein Hinein-Labyrinth durch Weglassen der letzten „0“, die für „außen“ steht. Die höchste Zahl steht immer für das Zentrum. Sollte diese nicht an letzter Stelle in der Umgangsfolge stehen, muss man noch eine Zahl hinzufügen.
Dieser „Trick“ ist nur bei zwei Labyrinthen notwendig und führt dann zu Labyrinthen mit geradzahligen Umgängen (bei VAT 984_6 und bei VAN 9447_7).

Die Galerie zeigt alle 21 Labyrinthe im konzentrischen Stil mit einer größeren Mitte.

Sie können ein einzelnes Bild in einer größeren Version anschauen durch Anklicken mit der Maus:

Alle Labyrinthe sind unterschiedlich. Keines ist bisher irgendwo aufgetaucht. Sie haben zwischen 9 und 16 Umgänge, die meisten jedoch 11 Umgänge. Es gibt zwischen 3 und 6 Wendepunkte.

In diesen Konstellationen gibt es rein mathematisch gesehen 134871 Varianten von interessanten Labyrinthen wie der Mathematik-Professor Tony Phillips nachgewiesen hat.

Es sind also noch lange nicht alle Möglichkeiten ausgeschöpft, neue Labyrinthe zu finden oder zu erfinden.

Verwandte Artikel

Weiterführender Link
Die Website von Tony Phillips (in Englisch)

Read Full Post »

Older Posts »

%d Bloggern gefällt das: