Wie sortiere ich eine Labyrinth-Gruppe?

Wo gehört ein Labyrinth hin? Und welche Verwandten hat es? Wie sortiere ich eigentlich die verwandten Labyrinthe einer Gruppe? Was gibt es da für Beziehungen? Oder: Wie finde ich die Verwandten in einer Gruppe?

Wenn ich da etwas mehr wissen will, nehme ich erst einmal ein beliebiges Labyrinth und erzeuge die weiteren Verwandten einer Gruppe durch Rückwärtszählen und Ergänzen der Ziffern der Umgangsfolgen. Dabei spielt es keine Rolle, ob ich zufällig das Basislabyrinth „erwische“ oder ein x-beliebiges Mitglied der Gruppe.

Als Beispiel nehme ich das in meinem letzten Beitrag als zweiten Vorschlag gewählte 11-gängige Labyrinth. Hier ist es in einer zentrierten Version im Knidos Stil zu sehen:

11-gängiges klassisches 7_9 Labyrinth
11-gängiges klassisches 7_9 Labyrinth

Die Umgangsfolge lautet: 0-7-2-5-4-3-6-1-8-11-10-9-12. Der Eintritt ins Labyrinth liegt auf dem 7. Umgang, der Eintritt in das Zentrum erfolgt vom 9. Umgang aus. Daher rührt auch die Bezeichnung 7_9 Labyrinth.

Durch Rückwärtszählen (und vertauschen von 0 und 12) erzeuge ich das dazu gegenläufige Labyrinth: 0-9-10-11-8-1-6-3-4-5-2-7-12.

11-gängiges klassisches 9_7 Labyrinth
11-gängiges klassisches 9_7 Labyrinth

Der Eintritt ins Labyrinth liegt auf dem 9. Umgang, der ins Zentrum auf dem 7. Umgang.

Jetzt ergänze ich diese Umgangsfolge 9-10-11-8-1-6-3-4-5-2-7 auf die Ziffer 12, also das Zentrum.und erhalte als Wegfolge: 0-3-2-1-4-11-6-9-8-7-10-5-12. Das ergibt dann das dazugehörige komplementäre Exemplar.

11-gängiges klassisches 3_5 Labyrinth
11-gängiges klassisches 3_5 Labyrinth

Jetzt fehlt noch ein Labyrinth, denn bei den nicht selbst-dualen Typen gibt es vier verschiedene Versionen.
Dazu zähle ich am einfachsten wieder rückwärts (ich bilde also die dazugehörige gegenläufige Version) und erhalte von der Umgangsfolge 0-3-2-1-4-11-6-9-8-7-10-5-12 die Umgangsfolge: 0-5-10-7-8-9-6-11-4-1-2-3-12.
Wahlweise hätte ich aber durch Ergänzen der Ziffern der Wegfolge des obigen ersten Beispiels auf 12 das dazu komplementäre Exemplar produzieren können..

11-gängiges klassisches 5_3 Labyrinth
11-gängiges klassisches 5_3 Labyrinth

Der Eintritt in das Labyrinth geschieht auf dem 5. Umgang, der in das Zentrum vom 3. aus.


Jetzt habe ich lauter gegenläufige und komplementäre Exemplare produziert. Aber welches ist das Basislabyrinth und welches das duale? Und die „echten“ gegenläufigen und komplementären?

Das Sortieren erfolgt anhand der Umgangsfolgen. Das Basislabyrinth ist dasjenige, das mit der niedrigsten Ziffer beginnt: 0-3-2-1-4-11-6-9-8-7-10-5-12, kurz gesagt: das 3_5 Labyrinth, also unser drittes Beispiel oben.

Das nächste ist das gegenläufige, das 5_3 Labyrinth, das vierte Beispiel oben.

Danach folgt das duale, das 7_9 Labyrinth, das ist das erste Beispiel oben.

Das vierte ist das komplementäre Labyrinth, das 9_7 Labyrinth, das zweite Beispiel oben.

Die Reihenfolge ist also: B, G, D, K. Das ist unabhängig davon, wie das Labyrinth gebildet wurde, ob durch Rückwärtszählen oder durch Ergänzen der Umgangsfolgen.

Zum Abschluss dazu ein kurzer Ausschnitt aus der Arbeit von Yadina Clark, die gerade dabei ist, Grundlegendes über die Labyrinth Typologie zu erarbeiten:

Gruppen

Verwandte Labyrinthe DURCH BASIS-DUAL-GEGENLÄUFIG-KOMPLEMENTÄR BEZIEHUNGEN

Jedes beliebige Labyrinth in einer Gruppe kann als Ausgangspunkt für die Betrachtung dieser Beziehungen gewählt werden, aber die Standardanordnung der Gruppe beginnt mit der numerisch niedrigsten Ziffer der Umgangsfolge in der Basisposition.

Verwandte Artikel

Werbung

Wie zeichne ich ein klassisches 7-gängiges Labyrinth im Knidos Stil?

Es folgt eine ausführliche Schritt-für-Schritt-Zeichenanleitung zur Konstruktion eines geometrisch-mathematisch korrekten Labyrinthes.

Die Vorgaben sind folgende: Die Maßeinheit für den Achsabstand der Linien beträgt 1 m. Der Durchmesser der Mitte soll das Vierfache dieses Abstandes betragen, also 4 m. Der Eintritt ins Labyrinth und in das Zentrum werden auf die zentrale Mittelachse gelegt.

Angaben zum Knidos Stil sind in diesem Artikel zu finden.

Figur 1: Als erstes wird der Mittelpunkt M1 des Labyrinthes festgelegt. Von hier ausgehend erfolgt die Ausrichtung der Hauptachse (senkrechte Linie) zum Eingang des Labyrinthes unten. Dann wird in 1.50 m Abstand dazu eine Parallele als Hilfslinie gezeichnet und in M1 ein Hilfskreis mit einem Radius von 3 m gezeichnet. Mittels Bogenschlag wird anschließend der Punkt Mittelpunkt M2 im Schnittpunkt dieser Hilfslinien rechts unterhalb konstruiert.

Fig. 1

Figur 2: Der Punkt M3 wird konstruiert, indem zwei Radien mit Radius 4 m um M1 und M2 links der Hauptachse zum Schnitt gebracht werden.

Fig. 2Figur 3: Zuerst werden die Geraden M1-M2 und M1-M3 verlängert, dann um M1 als Mittelpunkt sieben Kreisbögen gezeichnet mit den Radien 2.5 m bis 8.5 m. Das ist der Ariadnefaden, die Wegachse, für das Labyrinth.

Fig. 3Figur 4: Um M2 und M3 werden Kreisbögen mit den Radien 0.5 m und 1.5 m bis zu den Bogenenden der entsprechenden vorher konstruierten Kreisbögen gezogen. Der rechte Kreisbogen mit dem Radius 1.5 m geht nur bis zum Schnittpunkt mit der waagrechten Konstruktionslinie und führt dann als Gerade ins Zentrum M1.

Fig. 4Figur 5: Eine Parallele wird im Abstand von 1.5 m links der zentralen Achse als Hilfslinie gezeichnet. Um M3 als Mittelpunkt wird ein Hilfskreis mit dem Radius 4 m gezeichnet und mit der senkrechten Hilfslinie geschnitten. So entsteht der Mittelpunkt M4.

Fig. 5Figur 6: Die drei offenen Bogenstücke links der verlängerten Linie M1 – M3 werden mit den Radien 2.5 m, 3.5 m und 4.5 m bis zur Linie M3 – M4 verbunden.

Fig. 6Figur 7: Um M4 als Mittelpunkt werden zwei Bogenstücke mit den Radien 0.5 m und 1.5 m gezogen, der Radius 1.5 m nur bis zur waagrechten Konstruktionslinie zu M4. Von hier schließt sich eine Gerade zum Eingang des Labyrinths ganz unten an.

Fig. 7Figur 8: Um die Mittelpunkte M2 un M4 werden zwei Hilfskreise mit Radius 4 m gezeichnet und rechts der Zentralachse im Schnittpunkt derselben der neue Mittelpunkt M5 konstruiert.

Fig. 8Figur 9: Im neuen Sektor werden die rechts liegenden freien Bogenendstücke mit den Radien 2.5 m bis 5.5 m bis zur Linie M2 – M5, bzw. deren Verlängerung, verbunden.

Fig. 9Figur 10: Um M5 als Mittelpunkt werden noch zwei Halbkreise mit den Radien 0.5 m und 1.5 m konstruiert. Damit ist der komplette Ariadnefaden für das Labyrinth gezeichnet.

Fig. 10Figur 11: Parallel zu allen bisherigen Bogenstücken werden nun im Abstand von jeweils 0.5 m die Begrenzungslinien des Labyrinthes konstruiert. Beginnend mit R 1 m bis zu R 9 m für den äußersten Ring. Damit sind alle Linien für das Labyrinth komplett und können für verschiedene Darstellungen des Labyrinthes in unterschiedlichen Varianten verwendet werden.

Fig. 11Zum Beispiel hier mit gleichen Breiten für die Begrenzungslinien. Der Ariadnefaden ist der freie Raum zwischen diesen Linien:

Das 7-gängige klassische Labyrinth im Knidos Stil mit zentraler Achse

Das 7-gängige klassische Labyrinth im Knidos Stil mit zentraler Achse

Hier noch einmal die vorangegangenen Zeichenschritte in einer einzigen Konstruktionszeichnung zusammengefasst, die beliebig skaliert werden kann.

Die Konstruktionszeichnung

Die Konstruktionszeichnung

Und hier als PDF-Datei zum anschauen, drucken oder downloaden.

Verwandte Artikel

Das komplementäre (umgestellte) 7-gängige klassische Labyrinth im Knidos Stil

Die Darstellung im konzentrischen Stil habe ich in meinem letzten Beitrag (siehe Verwandte Artikel unten) beschrieben. Heute geht es um die Darstellung dieses Typs im Knidos Stil.

Die Umgangsfolge ist: 5-6-7-4-1-2-3-8. Das besondere daran ist, dass der Eintritt ins Labyrinth auf dem 5. Umgang erfolgt und der Eintritt ins Zentrum auf dem 3. Umgang.

Die Begrenzungslinien und der Ariadnefaden

Die Begrenzungslinien und der Ariadnefaden

Und trotzdem lässt sich dieser Typ auf die zentrale Achse ausrichten. Das wird nur möglich durch die Bearbeitung im Knidos Stil.

Zum ursprünglichen Labyrinth zurück komme ich mit der gleichen Methode, mit der ich auch zum komplementären Typ gelangt bin: Ich ergänze die Zahlenreihe der Umgangsfolge um die Differenz auf die letzte Ziffer (das Ziel). Also:
5-6-7-4-1-2-3-8
3-2-1-4-7-6-5-8
8-8-8-8-8-8-8-8
Das ist dann das originale, wohlbekannte klassische (kretische) Labyrinth.

Was bedeutet eigentlich der Knidos Stil?
Darunter verstehe ich vor allem, dass das Labyrinth ein größeres Zentrum erhält als nur eine Wegbreite, dass es möglichst kompakt ist und vor allem aus der Umgangsfolge entwickelt wird und nicht nach dem Grundmuster für die Begrenzungslinien. Es ist also der Ariadnefaden, der Weg im Labyrinth, der die Konstruktion bestimmt. Und diese muss geometrisch korrekt sein mit gleichbleibenden Wegbreiten, möglichst runden Elementen  und möglichst wenigen „Leerstellen“.

Hier in einer weiteren Grafik:

Das komplementäre Labyrinth im Knidos Stil

Das komplementäre Labyrinth im Knidos Stil

Hier die Zeichenanweisung für eine Art Prototyp zum skalieren für das Achsmaß von 1 m.

Die Konstruktionszeichnung

Die Konstruktionszeichnung

Und hier als PDF-Datei zum anschauen, drucken oder downloaden.

Verwandter Artikel

Neue 5-gängige Labyrinthe mit Doppelbarrieren

Bei der Beschäftigung mit der Doppelbarrierentechnik in den letzten Beiträgen bin ich bei Mark Wallingers Labyrinthen in der Londoner U-Bahn auf dieses Exemplar gestoßen:

Das Labyrinth 233/270 in der U-Bahn Station Hyde Park Corner, Foto: © Jack Gordon

Das Labyrinth 233/270 in der U-Bahn Station Hyde Park Corner, Foto: © Jack Gordon

Diese Datei ist lizenziert unter der Creative-Commons-Lizenz „Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 international“.

Das Besondere daran ist, dass sich im oberen Teil der Zentralachse zwei Doppelbarrieren nebeneinander befinden. Bei der von ihm gewählten Wegführung bewegt man sich bei der Überleitung vom 2. auf den 3. Quadranten zuerst von der Mitte weg.

Das habe ich nun so verändert, dass man bei einem begehbaren Labyrinth eine Bewegung zur Mitte hin „erleben“ würde.

So sieht das dann aus:

Ein neues Sektorenlabyrinth in konzentrischem Stil

Ein neues Sektorenlabyrinth in konzentrischem Stil

Die seitlichen Doppelbarrieren habe ich ebenfalls verschoben und dadurch wird die Wegführung in allen Quadranten ebenfalls unterschiedlich. Es entsteht also ein neuer Typ.

Hier im Knidos Stil:

Ein neues zentriertes Sektorenlabyrinth im Knidos Stil

Ein neues zentriertes Sektorenlabyrinth im Knidos Stil

Warum nicht auch als zweigeteiltes Labyrinth?

Ein neues 5-gängiges, zweigeteiltes Labyrinth

Ein neues 5-gängiges, zweigeteiltes Labyrinth

Der linke Teil hat die Wegfolge: 3-4-5-2-1 und der rechte Teil: 5-4-1-2-3, also stecken da zwei 5-gängige Labyrinthe drin.

Und hier wieder der Knidos Stil:

Ein neues 5-gängiges, zweigeteiltes und zentriertes Labyrinth im Knidos Stil

Ein neues 5-gängiges, zweigeteiltes und zentriertes Labyrinth im Knidos Stil

Das bemerkenswerte an diesem Typ ist auch, dass sowohl der Eintritt ins Labyrinth im 3. Umgang erfolgt, wie auch der Eintritt in die Mitte.

Verwandte Artikel