Feeds:
Beiträge
Kommentare

Posts Tagged ‘echte Doppelbarriere’

Bekanntlich gibt es 8 Labyrinthe mit 3 Doppelbarrieren, 4 Achsen und 5 Umgängen (siehe: Verwandte Beiträge 1, unten). In Abb. 1 zeige ich die Muster und Labyrinthe wieder und gebe ihnen fortlaufende Namen von „A“ bis „H“.

Abbildung 1. Die 8 Labyrinthe mit echten Doppelbarrieren

Die wichtigste Einschränkung bei der Ableitung dieser Labyrinthe war, dass die Doppelbarriere so aussehen muss, wie bei Gossembrot. Erwin hat kommentiert und will auch Wegführungen einbeziehen, bei denen der Weg vom äussersten auf den innersten Umgang wechselt oder vice versa. Aus meiner Sicht sind das keine Doppelbarrieren. Zudem kommt dieses Gestaltungsprinzip bereits in älteren historischen Labyrinthen vor. Ich will nun die neue, bei Gossembrot erstmals konsequent verwendete Doppelbarriere mit „echte Doppelbarriere“, die ältere Wegführung mit „unechte Doppelbarriere“ bezeichnen. Zweifellos ist die unechte Doppelbarriere ein interessantes Gestaltungselement. Sie ist in reiner Form im Labyrinth Typ Avenches verwirklicht. Die echte Doppelbarriere kommt ebenso in reiner Form in den in Abb. 1 gezeigten 8 Labyrinthen vor. Man kann auch beide Gestaltungs Prinzipien mischen, wie Erwin und Mark Wallinger das getan haben (siehe verwandte Beiträge 2).

Hier interessiert mich die Frage, wieviele Labyrinthe es gibt, wenn echte und /oder unechte Doppelbarrieren verwendet werden. Die wichtigsten Grundlagen dafür wurden schon beschrieben (verwandte Beiträge 1) . Was sich aber ändert, ist, dass nun nicht nur Optionen a) oder b), sondern auch Optionen c) oder d) für die Verbindung der Sektoren zugelassen sind (Abb.2).

Abbildung 2. Zulässige Verbindungen

Die übrigen Einschränkungen bleiben nach wie vor gültig. Sektorenmuster Nr. 1 und Nr. 6 können gar nicht verwendet werden. Die vier einseitigen Sektorenmuster Nr. 2, Nr. 4, Nr. 5 und Nr. 7 dürfen nach wie vor nur in den Quadranten I und IV stehen. Wir wollen ja auch bei Übergängen, wo der Weg den Umgang wechselt, beide Hälften einer Doppelbarriere an der Nebenachse erhalten. Es können also wiederum nur Muster Nr. 3 und Nr. 8 in allen Quadranten stehen.

Daraus folgt, dass wir von den bereits gefundenen acht Labyrinthen mit echten Doppelbarrieren ausgehen können. Zur Illustration der folgenden Betrachtungen greife ich das Labyrinth D heraus. Dieses hat die Musterfolge 8 3 8 3.

Wenn wir nun auch unechte Doppelbarrieren zulassen, führt das dazu, dass an jeder Nebenachse nicht nur eine, sondern zwei Möglichkeiten für die Verbindung mit dem nächsten Sektor bestehen: Eine auf demselben Umgang, die will ich „direkte“ Verbindung nennen, und eine mit Wechsel auf den anderen extremen Umgang, die ich „indirekte“ Verbindung nennen will. Da man an jeder Nebenachse beide Optionen zur Verfügung hat, führt das zu einer viel grösseren Anzahl von möglichen Kombinationen.

Abbildung 3 zeigt die möglichen Kombinationen, wenn wir vom Labyrinth D ausgehen und auch indirekte Verbindungen erlauben. Im ersten Quadrant steht Muster Nr. 8. An der ersten Nebenachse gibt es zwei Verbindungsmöglichkeiten von Quadrant I zu Quadrant II. Muster Nr. 8 aus Quadrant I kann direkt mit Nr. 3 oder auch indirekt mit Nr. 8 in Quadrant II verbunden werden. Muster Nr. 8 ist komplementär zu Muster Nr. 3. Die indirekte Verbindung erfordert das zur direkten Verbindung komplementäre Muster. Das gilt allgemein. An der 2. Nebenachse gibt es für jedes Muster aus Quadrant II wieder zwei Möglichkeiten der Verbindung mit Quadrant III und ebenso an der 3. Nebenachse. Anstatt wie bisher nur 1*1*1 = 1 Kombinationen mit direkter Verbindung gibt es nun insgesamt 2*2*2 = 8 Kombinationen mit direkter und / oder indirekter Verbindung von allen Quadranten.

Abbildung 3. Mögliche Kombinationen mit direkten oder indirekten Verbindungen ausgehend von Labyrinth D

Jede Kombination ergibt ein neues 4-achsiges Sektorenlabyrinth. Ich illustriere das in Abb. 4 mit der ersten Kombination. Diese ergibt das schon bekannte Labyrinth D mit ausschliesslich echten Doppelbarrieren und der Musterfolge 8 3 8 3.

Abbildung 4. Die erste Kombination: Ausschliesslich direkte Verbindungen mit echten Doppelbarrieren – Labyrinth D

Als weiteres Beispiel zeige ich in Abb. 5 ein Muster, das gebildet wird durch eine Kombination von echten und unechten Doppelbarrieren. Und zwar hat es an der ersten und an der dritten Nebenachse eine unechte Doppelbarriere mit indirekter Verbindung, an der 2. Nebenachse eine echte Doppelbarriere mit direkter Verbindung. Aus dieser Kombination ergibt sich ein Sektorenlabyrinth mit der Musterfolge 8 8 3 3.

Abbildung 5. Die sechste Kombination: Mischung aus echten und unechten Doppelbarrieren

Schliesslich präsentiert Abb. 6 alle acht Muster, die aus dem Labyrinth D durch Kombinationen von echten und unechten Doppelbarrieren gebildet werden können.

Abbildung 8. Alle acht Kombinationen ausgehend von Labyrinth D

Das gleiche Vorgehen wie beim Labyrinth D ist auch für die sieben anderen Labyrinthe, also Labyrinth A, B, C, E, F, G und H durchführbar. Das ergibt dann insgesamt 8 * 8 = 64 verschiedene Labyrinth Typen mit drei echten oder unechten Doppelbarrieren, vier Achsen und fünf Umgängen.

Verwandte Beiträge

  1. Die Labyrinthe mit 3 Doppelbarrieren, 4 Achsen und 5 Umgängen
  2. Neue 5-gängige Labyrinthe mit Doppelbarrieren

Read Full Post »

%d Bloggern gefällt das: