Das Rad in der Eilenriede (Hannover) war ursprünglich ein Wunderkreis

Seit 1932 befindet sich ein Labyrinth vom Typ Baltisches Rad in der Eilenriede, dem Stadtwald von Hannover. In der größeren Mitte steht ein Lindenbaum und es hat einen zusätzlichen direkten, kurzen Weg nach außen. Dadurch wird es zu einem Durchgangslabyrinth. Es gehört zu den letzten vier historischen Rasenlabyrinthen in Deutschland (die anderen sind Kaufbeuren, Graitschen, Steigra).

Das Rad in der Eilenriede heutzutage, Foto: Axel Hindemith, gemeinfrei

Es befand sich vorher am heutigen Emmichplatz und wurde bereits 1642 in der Stadtchronik von Hannover erwähnt. Der Anlass dazu war ein Besuch von Herzog Friedrich von Holstein mit seiner Verlobten, der Herzogin Sophia Amalia von Braunschweig und Lüneburg bei seinem hannoverschen Schwager, Herzog Christian Ludwig. Dieser organisierte für das Brautpaar ein „Zeltlager“ in der Eilenriede, dessen Höhepunkt der Brautlauf der Fürstlichkeiten im Labyrinth war.

Wie hat das Labyrinth wohl damals ausgesehen?
Erst jetzt bin ich im Buch „Reise ins Labyrinth“ von Uwe Wolff aus dem Jahr 2001 im Kapitel über die deutschen Rasenlabyrinthe (S. 50 – S. 57) auf eine alte Zeichnung des damaligen Rades gestoßen.

Das Rad 1858, Quelle: „Reise ins Labyrinth“ von Uwe Wolff, 2001

So sah es jedenfalls 1858 aus. Und vermutlich (oder hoffentlich) entspricht es dem ursprünglich angelegtem Labyrinth.
In der Zeichnung fällt vor allem auf, dass die Mitte von einer Doppelspirale gebildet wird. So wie es auch beim Typ Wunderkreis vorkommt. Auch da gibt es zwei Zugänge, manchmal getrennt, manchmal mit einer Verzweigung.

Bei der Suche im Internet bin ich noch auf eine alte Postkarte mit der Labyrinthdarstellung gestoßen. Sie dürfte wohl das Rad aus der Zeit vor 1932 zeigen.

Das Rad auf einer Postkarte

Hier ist wahrscheinlich einiges idealisiert worden und es gibt zwei Umgänge weniger als in der Zeichnung von 1858. Aber es hat wieder die Doppelspirale in der Mitte und die zwei Zugänge. Und damit entspricht es wieder einem Wunderkreis.

Über die Unterschiede von Wunderkreis und Baltisches Rad habe ich schon vor Jahren geschrieben. Dazu empfehle ich, die unten stehenden verwandten Artikel noch einmal nachzulesen.
Vor allem die Transformation eines Wunderkreises in ein Baltisches Rad hatte mich interessiert.
Und diese Umwandlung hat es offensichtlich beim Rad in der Eilenride gegeben.

Verwandte Artikel

Wie komme ich zu einem Durchgangslabyrinth?

Wir nehmen ein 7-gängiges kretisches Labyrinth und nummerieren die einzelnen Umgänge von außen nach innen. „0“ steht für außen, „8“ bezeichnet das Zentrum. Die beiden Ziffern nehme ich in die Umgangsfolge mit hinein, obwohl sie eigentlich keine Umgänge sind. Als Start- und Zielpunkte erleichtern sie jedoch das Verständnis der Struktur des Labyrinths.

Der Ariadnefaden im 7-gängigen Labyrinth

Der Ariadnefaden im 7-gängigen Labyrinth

Die Umgangsfolge lautet: 0-3-2-1-4-7-6-5-8

Jeder, der schon einmal den Ariadnefaden in den Schnee „getrampelt“ hat, kennt das: Plötzlich ist kein Platz mehr in der Mitte und da geht man einfach heraus. Und schon hat man ein Durchgangslabyrinth geschaffen. Das ist bei nahezu allen Labyrinthen möglich.

So sieht es dann vielleicht aus:

Der Ariadnefaden im Durchgangslabyrinth

Der Ariadnefaden im Durchgangslabyrinth

Will man nun ein kompakteres Labyrinth, muss man die Form verändern. Die inneren Umgänge werden letztlich zu einer Doppelspirale. Statt zweier getrennter Wege, lässt sich dieser auch zusammenführen und wir haben eine Verknüpfung.

Etwa so:

Das 7-gängige Durchgangslabyrinth

Das 7-gängige Durchgangslabyrinth

Betrachten wir die Umgangsfolge, wenn wir den linken Weg nehmen oder die Abzweigung nach links:
0-3-2-1-4-7-6-5-0

Jetzt nehmen wir zuerst den rechten Weg oder die Abzweigung nach rechts, dann ist die Umgangsfolge:
0-5-6-7-4-1-2-3-0

Da die zwei Reihen untereinander geschrieben sind, lassen sie sich ganz einfach addieren (ohne erste und letzte Ziffer):
8-8-8-8-8-8-8

Das bedeutet: Gehe ich nach links, bin ich im originalen Labyrinth, gehe ich nach rechts, durchquere ich das komplementäre.

Das komplementäre Labyrinth zum 7-gängigen Labyrinth

Das komplementäre Labyrinth zum 7-gängigen Labyrinth

Es hat die Umgangsfolge 0-5-6-7-4-1-2-3-8.

Oder anders ausgedrückt: Das Durchgangslabyrinth enthält zwei verschiedene Labyrinthe, das originale und das komplementäre.

Das 7-gängige kretische Labyrinth ist selbstdual. Dadurch erhalte ich nur zwei verschiedene Labyrinthe durch das Drehen oder Spiegeln, wie Andreas das ausführlich in seinen vorangegangenen Artikeln beschrieben hat.

Wie sieht nun das Durchgangslabyrinth bei einem nicht selbstdualen Labyrinth aus?

Dazu wähle ich ein 9-gängiges Labyrinth als Beispiel:

Ein 9-gängiges Labyrinth

Ein 9-gängiges Labyrinth

Hier sind die Begrenzungslinien dargestellt.
Links oben sehen wir das originale Labyrinth, rechts daneben ist das duale dazu.
Links unten sehen wir das komplementäre zum originalen (oben), rechts daneben ist das duale dazu.
Dieses duale ist aber gleichzeitig auch das komplementäre zum dualen oben.

Das erste 9-gängige Durchgangslabyrinth

Das erste 9-gängige Durchgangslabyrinth

Das erste Durchgangslabyrinth zeigt links den Weg wie im originalen Labyrinth. Rechts zeigt sich jedoch überraschenderweise der Weg des komplementären Labyrinthes zum dualen Labyrinth.

Und das zweite?

Das zweite 9-gängige Durchgangslabyrinth

Das zweite 9-gängige Durchgangslabyrinth

Der linke Weg entspricht dem dualen Labyrinth des Originals. Der rechte Weg aber dem komplementären Labyrinth des Originals.

Jetzt schauen wir wieder ein selbstduales Labyrinth an, ein 11-gängiges, das aus dem erweitertem Grundmuster entwickelt wurde.

Ein 11-gängiges Labyrinth im Knidos Stil

Ein 11-gängiges Labyrinth im Knidos Stil

Das linke ist das originale Labyrinth mit der Umgangsfolge:
0-5-2-3-4-1-6-11-8-9-10-7-12

Das rechte zeigt das komplementäre dazu mit der Umgangsfolge:
0-7-10-9-8-11-6-1-4-3-2-5-12

Die Probe durch Addition (ohne erste und letzte Ziffer):
12-12-12-12-12-12-12-12-12-12-12

Nun konstruieren wir wieder das dazugehörige Durchgangslabyrinth:

Das 11-gängige Durchgangslabyrinth

Das 11-gängige Durchgangslabyrinth

Wieder sehen wir das originale und das komplementäre Labyrinth in einer Figur vereint. Die Umgangsfolgen vorwärts und rückwärts gelesen, zeigen auch, daß die beiden Labyrinthe spiegelsymmetrisch sind. Das trifft auch auf die vorangegangenen Durchgangslabyrinthe zu.

Das sind jetzt alles labyrinththeoretische Überlegungen. Aber hat es solch ein Labyrinth schon einmal als historisches Labyrinth gegeben? Das 7- und das 9-gängige sind mir noch nicht begegnet, aber das 11-gängige Durchgangslabyrinth ist mir bei der Beschäftigung mit den Babylons auf den Solovki-Inseln schon begegnet (siehe Verwandte Artikel unten), Dabei habe ich auch überlegt, wie diese Labyrinthe wohl entstanden sind. Sicher nicht aus den vorgenannten theoretischen Überlegungen heraus, sondern eher aus einer „Mutation“ der 11-gängigen Trojaburgen im skandinavischen Raum. Und damit zusammenhängend auch aus einer anderen Sicht auf die Labyrinthe in dieser Kultur.

Ein besonders schönes Exemplar gibt es als 15-gängiges Labyrinth unter einem Leuchtturm auf der schwedischen Insel Rödkallen im Bottnischen Meerbusen.

Eine 15-gängige Trojaburg auf der Insel Rödkallen

Eine 15-gängige Trojaburg auf der Insel Rödkallen, Foto mit freundlicher Genehmigung von Swedish Lapland.com, © Göran Wallin

Es hat eine offene Mitte und wieder die Verzweigung für die Wahl des Weges. Mehr über schwedische Labyrinthe bringt dieser Artikel auf Swedish Lapland.com von Göran Wallin.

Für mich zeigt sich in diesen Labyrinthen eine ganz besondere Qualität, auch wenn damit ein Paradigmenwechsel verbunden ist.

Verwandte Artikel

Die Babylonischen Labyrinthe: Eine Übersicht

Ich habe schon ausführlich über die Babylonischen Labyrinthe geschrieben. Dazu verweise ich auf die Verwandten Artikel unten. Hier soll es nun um eine Zusammenstellung gehen.

Die meisten Informationen habe ich dem ausführlichen und ausgezeichneten Artikel von Richard Myers Shelton in Jeff Sawards Caerdroia 42 (März 2014) entnommen, auf den ich auch hier noch einmal hinweisen möchte.

Die Funde befinden sich in den verschiedensten Sammlungen und Museen weltweit. Ich verwende die Katalognummer, um die unterschiedlichen Tontafeln zu bezeichnen.

Die ältesten Exemplare in eckiger Form stammen aus der alt-babylonischen Zeit um 2000 – 1700 v. Chr. und befinden sich in der norwegischen Schøyen Collection.

Das rechteckige Babylonische Labyrinth MS 3194

Das rechteckige Babylonische Labyrinth MS 3194

Das quadratische Babylonische Labyrinth MS 4515

Das quadratische Babylonische Labyrinth MS 4515

Dann folgen die verschiedenen mehr runden Eingeweidelabyrinthe aus der mittel- bis neubabylonischen Zeit um 1500 – 500 v. Chr.. Sie sind zu finden im Vorderasiatischen Museum Berlin (VAN … und VAT … Nrn.), im Louvre (AO 6033), im Rijksmuseum van Oudheden in Leiden (Leiden Labyrinth) oder stammen aus Tell Barri in Syrien (E 3384).

Die Tafeln mit mehreren Darstellungen habe ich von links oben nach rechts unten nummeriert und zeige die gut sichtbaren (21 Stück) in größeren Nachzeichnungen. Einige Darstellungen sind unleserlich oder zerstört. Insgesamt sind es 48 Abbildungen.

Dann gibt es noch 6 Einzelexemplare. Die folgen hier:

Eingeweidelabyrinthe

Eingeweidelabyrinthe

Hier nun die 21 größeren Nachzeichnungen der gut erkennbaren Exemplare:

Eingeweidelabyrinth auf VAT 984

Eingeweidelabyrinth auf VAT 984

Eingeweidelabyrinthe auf VAN 9447

Eingeweidelabyrinthe auf VAN 9447

Eingeweidelabyrinthe auf E 3384 recto

Eingeweidelabyrinthe auf E 3384 recto

Eingeweidelabyrinthe auf E 3384 verso

Eingeweidelabyrinthe auf E 3384 verso

Damit haben wir insgesamt 56 Babylonische Labyrinthe vor uns, von denen 29 eindeutig zu erkennen sind.

Allen 29 Exemplaren ist gemeinsam, dass sie einen eindeutigen Weg aufweisen, der komplett zurückzulegen ist. Es gibt also keinerlei Abzweigungen, Sackgassen oder tote Enden wie bei einem Irrgarten.

Ebenso haben alle 29 Exemplare eine unterschiedliche Linienführung und kein gemeinsames Muster.

Alle (bis auf VAT 9560_4) haben zwei Eingänge. Bei den eckigen Labyrinthen liegen sie ungefähr in der Mitte der gegenüberliegenden Seiten. Bei den übrigen, meist rundlichen Exemplaren liegen sie nebeneinander oder sind versetzt.

Das Leiden Labyrinth ist einfach eine Doppelspirale. Eine weitere Besonderheit ist das Eingeweidelabyrinth VAT 9560_4. Es hat nur einen Eingang und eine spiralförmige Mitte, ganz so wie wir es vom Indischen Labyrinth kennen. Es stellt also einwandfrei ein Labyrinth dar.

Das Mesopotamische Labyrinth könnte auch eine geschlossene Mitte (und deshalb nur einen Eingang) haben und die Schlingen verlaufen in einfachen Serpentinen.

Die übrigen 24 Exemplare haben alle eine viel kompliziertere Linienführung mit ineinander verschachtelten Schlaufen und Schlingen.

Die 27 unleserlichen Exemplare sind vermutlich ähnlich strukturiert. Und vielleicht existieren ja noch andere Tontafeln, die der Entdeckung harren?

Über die Bedeutung der eckigen Exemplare wissen wir so gut wie nichts, die übrigen 27 mehr runden Exemplare sind Eingeweidelabyrinthe.

Bei den Eingeweidelabyrinthen sind die Darmschlingen eines Opfertieres als Vorlage für die Deutung bei der Eingeweideschau dargestellt. Von daher ist auch zu verstehen, dass sie möglichst unterschiedlich aussehen sollten. Das erklärt ihre große Vielfalt. Und auch wiederum ihre Ähnlichkeit. Sie stellen eher einen eigenen Stil als einen eigenen Typ dar.

Die Babylonischen Labyrinthe stammen aus einem eigenen Zeitraum, aus einem anderen Kulturkreis und folgen einem anderen Paradigma als das übliche westliche Verständnis des Labyrinths. Sie sind vor allem Durchgangslabyrinthe. Doch auch in unserer Tradition kennen wir Durchgangslabyrinthe, so auch den Wunderkreis.

Ein Wunderkreis im Babylonischen Stil

Ein Wunderkreis im Babylonischen Stil: Das Logo des diesjährigen Treffens der Labyrinth Society (TLS), Entwurf und © Lisa Moriarty

Verwandte Artikel

Wie mache ich einen Wunderkreis oder ein Baltisches Rad?

Der Wunderkreis und das baltische Rad sind zusammengesetzte Labyrinthe, die aus Bögen um unterschiedliche Mittelpunkte konstruiert werden. Die beiden unteren Wendepunkte sind für die „labyrinthischen“ Umgänge zuständig, die in der Mitte für die Doppelspirale.

Ein baltisches Rad hat eine größere, leere Mitte und einen kurzen zweiten Ausgang. Das ist schon eine Doppelspirale, jedoch ohne weitere Windungen. Die zwei Zugänge sind in der Regel durch ein eigenes Zwischenteil, eine Art Schuhlöffel, getrennt.

Das Muster für die Linienführung ist für beide Labyrinthtypen das gleiche. Und die Methode, ein solches Muster zu erzeugen, ebenso. Wobei die Anzahl der Umgänge insgesamt trotzdem unterschiedlich sein kann.

Hier geht es nur um die Methode. Die geometrisch korrekte Umsetzung ist wieder eine andere Sache. Darüber gibt es in diesem Blog schon etliche Beiträge.

Es gibt kein Grundmuster wie beim wohlbekannten kretischen (klassischen) Labyrinth. Jedoch eine im Grunde sehr einfache Methode, solch ein Labyrinth zu zeichnen oder gleich mit Steinen zu legen oder in den Sand zu kratzen.

Eine Schritt- für Schritt-Anleitung soll es zeigen. Es werden die Begrenzungslinien des Labyrinths gezeichnet, der Weg verläuft zwischen den Linien.

Schritt 1

Schritt 1

Schritt 1: Ich zeichne einen halben Bogen nach oben, von links nach rechts.

Schritt 2

Schritt 2

Schritt 2: Ich springe etwas nach links, mache einen Bogen nach links unten, umrunde den ersten Bogen und lande rechts vom vorhergehenden Bogen.
Das wäre schon die Mitte des baltischen Rades oder die Mitte des kleinstmöglichen Wunderkreises.

Schritt 3

Schritt 3

Schritt 3: Die Doppelspirale soll jedoch größer werden.  Daher springe ich wieder etwas nach links zum Ende des ersten Bogens in Grün, mache einen weiteren Bogen nach links unten und umrunde wieder den vorhergehenden Bogen.
So könnte ich jetzt beliebig weiter machen. Es müssen rechts aber immer zwei freie Bogenenden übrig bleiben. Damit wäre die Doppelspirale im Wunderkreis fertig.

Schritt 4

Schritt 4

Schritt 4: Nun muss ich mindestes drei halbkreisförmige Bögen um die bisherigen Linien herum hinzufügen.
Wenn ich ein größeres Labyrinth haben will, kann ich paarweise mehr Linien hinzufügen. Es muss aber immer eine ungerade Anzahl von Bögen sein.
In unserem Beispiel haben wir jetzt auf der linken Seite drei freie Linienenden und auf der rechten Seite fünf.

Schritt 5

Schritt 5

Schritt 5: Nun verbinde ich auf jeder Seite das jeweils innerste und das äußerste freie Linienende so miteinander, dass dazwischen ein Zugang bleibt. Das wird solange fortgesetzt (hier nur rechts), bis auf jeder Seite nur noch ein einzelnes freies Linienende übrig bleibt.

Schritt 6

Schritt 6

Schritt 6: Die beiden auf jeder Seite noch freien Linienenden werden nach vorne zur Mitte hin verlängert. Sie bilden die beiden unteren Wendepunkte.
Das Labyrinth ist fertig.

Am Schluss probieren wir, ob es auch wirklich stimmt. Wir gehen zwischen den Linien hinein, biegen nach links oder rechts ab und müssen wieder am Ausgangspunkt ankommen. Wenn nicht, muss etwas falsch sein.

Am besten probieren Sie das gleich selber aus, mit einem Bleistift auf einem Blatt Papier. Viel Erfolg.

Verwandte Artikel