Verwandte Labyrinthe berechnen

Basierend auf der dritten Anordnung der Labyrinthe aus dem letzten Beitrag (siehe: verwandte Beiträge, unten) können das gegenläufige und komplementäre direkt und das duale Labyrinth indirekt ganz einfach berechnet werden. Dazu wird die Umgangsfolge des Basislabyrinths verwendet.

Das will ich hier am Beispiel des in Abb. 1 abgebildeten Labyrinths durchführen.

Abbildung 1. Labyrinth aus dem 18. oder 19. Jh. geschnitzt auf einem Holzpfeiler in der alten Moschee in Tal, Nordpakistan. Quelle: Saward, S. 60°

Das Labyrinth liegt mit dem Eingang oben und dreht gegen den Uhrzeigersinn. Ich zeichne es zuerst um, so dass der Eingang unten liegt und es im Uhrzeigersinn dreht. So liegt es in der Form vor, die ich immer bei Vergleichen von Labyrinthen verwende. Dieses einachsige Labyrinth mit 9 Umgängen wird nun unser Basislabyrinth. Seine Umgangsfolge ist 5 4 3 2 1 6 9 8 7.

Abbildung 2. Labyrinth von Tal, Umzeichnung: Basislabyrinth

Als erstes schreiben wir die Umgangsfolge rückwärts

Basis: 5 4 3 2 1 6 9 8 7 <—> 7 8 9 6 1 2 3 4 5: Gegenläufiges.

Das bringt uns zum gegenläufigen Labyrinth (Abb. 3).

Abbildung 3. Das Gegenläufige zum Labyrinth von Tal

Nun ergänzen wir, zweitens, die Umgangsfolge des Basislabyrinths zur Anzahl der Umgänge plus eins, also zu 10. 

So erhalten wir die Umgangsfolge 5 6 7 8 9 4 1 2 3 des komplementären Labyrinths, das in Abb. 4 gezeigt wird. 

Abbildung 4. Das Komplementäre zum Labyrinth von Tal

Und schreiben wir nun die Umgangsfolge des Komplementären rückwärts, erhalten wir mittelbar diejenige des dualen Labyrinths: 

Komplement: 5 6 7 8 9 4 1 2 3 <—> 3 2 1 4 9 8 7 6 5: Duales. 

Das duale Labyrinth wird in Abb. 5 dargestellt. 

Abbildung 5. Das Duale zum Labyrinth von Tal

Dieses Ergebnis können wir nun noch prüfen, indem wir die Umgangsfolgen des Gegenläufigen und des Dualen addieren. Sie müssen sich an jeder Stelle zu 10 ergänzen, denn das Duale ist komplementär zum Gegenläufigen.

Die Prüfung bestätigt das Resultat. Das Duale kann auch indirekt aus dem Gegenläufigen berechnet werden, indem man die Umgangsfolge des Gegenläufigen zu 10 ergänzt. Einfacher ist es aber, die Umgangsfolge des Komplementären rückwärts zu schreiben. 

Wir müssen somit die Umgangsfolge des Basislabyrinths kennen. Dann schreiben wir sie rückwärts und erhalten das Gegenläufige. Wir ergänzen sie zu eins mehr als die Anzahl der Umgänge und erhalten das Komplementäre. Und zum Schluss schreiben wir die Umgangsfolge des Komplementären rückwärts und erhalten das Duale.

° Saward Jeff. Labyrinths & Mazes. The Definitive Guide to Ancient & Modern Traditions. Gaia Books: 2003.

Verwandte Beiträge:

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.